معرفی شرکت ها


drugstone-0.3.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The python package for the https://drugst.one/ platform.
ویژگی مقدار
سیستم عامل -
نام فایل drugstone-0.3.2
نام drugstone
نسخه کتابخانه 0.3.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ugur Turhan
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/t-ugur/drugstone.git
آدرس اینترنتی https://pypi.org/project/drugstone/
مجوز -
# Drugstone This is the python package for the drugst.one platform. This package offers tools for drug-repurposing and is a programmatic approach to the functionality of the web portal. For more information visit: https://drugst.one/ ## Installation Drugstone depends on a few packages to work. You can use pip to install them. ```console pip install urllib3 requests pandas pyvis upsetplot ``` Then you can install drugstone. ```console pip install drugstone ``` Finally, it should be possible to import drugstone to your python script. ````python import drugstone ```` You can use ```python import drugstone as ds ``` to access the complete drugstone API with the `ds.` notation. Drugstone officially supports Python 3.6+. ## Supported features Drugstone offers a toolbox for drug repurposing applications. - Search for drugs, interacting with a list of genes - Search for drug targets, for a list of genes - Visualize data in common formats like JSON or CSV - create interaction graphs for drug and gene interactions ## Available Datasets Protein-protein interactions (ppi_dataset): ``` NeDRex, BioGRID, IID, IntAct, STRING, APID``` Protein-drug interactions (pdi_dataset): ```NeDRex, DrugBank, Drug Central, ChEMBL, DGIdb``` Please note that some of the datasets require you to accept their terms and conditions before usage. ```DrugBank``` can only be used if the license has been agreed to and since ```NeDRex``` includes ```DrugBank``` data, only a part of ```NeDRex``` is available without agreeing to our license. The terms and conditions can be read by calling ```drugstone.print_license()``` and can be accepted after reading with ```drugstone.accept_license()```. ## Start a new task With Drugstone it is easy and convenient to search for drugs or drug-targets, starting with a list of genes. ```python from drugstone import new_task genes = [ "CFTR", "TGFB1", "SCNN1B", "DCTN4", "SCNN1A", "SCNN1G", "CLCA4", "TNFRSF1A", "FCGR2A" ] parameters = { "target": "drug", "algorithm": "trustrank" } task = new_task(genes, parameters) r = task.get_result() genes = r.get_genes() drugs = r.get_drugs() # save directly to files r.download_json() r.download_graph() ``` ## Start multiple tasks You can start multiple tasks at once, either with completely independent parameters or with same parameters and different algorithms. ### Multiple algorithms By defining an *algorithms* value in the parameters dictionary, you can pass a list of algorithm values. For every algorithm, a task will be started, with otherwise same parameter values. ````python from drugstone import new_tasks genes = [ "CFTR", "TGFB1", "SCNN1B", "DCTN4", "SCNN1A", "SCNN1G", "CLCA4", "TNFRSF1A", "FCGR2A" ] parameters = { "target": "drug", "algorithms": ["trustrank", "closeness", "degree"] } tasks = new_tasks(genes, parameters) r = task.to_dict() r.download_json() ```` ### Independent parameters `new_tasks()` accepts a list of parameter dictionaries. For every dictionary a task will be started. ````python from drugstone import new_tasks genes = [ "CFTR", "TGFB1", "SCNN1B", "DCTN4", "SCNN1A", "SCNN1G", "CLCA4", "TNFRSF1A", "FCGR2A" ] p1 = { "target": "drug", "ppiDataset": 'nedrex', "pdiDataset": "drugcentral" } p2 = { "target": "drug", "ppiDataset": 'IID', "pdiDataset": "chembl" } p3 = { "target": "drug", "ppiDataset": 'apid', "pdiDataset": "dgidb" } tasks = new_tasks(genes, [p1, p2, p3]) r = tasks.get_result() r.to_dict() r.download_json() # only with Python 3.6 r.create_upset_plot() ```` ### Union and intersection of tasks You can get the union or intersection of tasks. That returns a TaskResult with the according result. ````python from drugstone import new_tasks genes = [ "CFTR", "TGFB1", "SCNN1B", "DCTN4", "SCNN1A", "SCNN1G", "CLCA4", "TNFRSF1A", "FCGR2A" ] parameters = { "target": "drug", "algorithms": ["trustrank", "closeness", "degree"] } tasks = new_tasks(genes, parameters) u = tasks.get_union() u.download_json() i = tasks.get_intersection() i.download_json() ```` ## Combine a drug-target search with a drug search This will perform a drug-target search for the seed genes and then use the drug-target search results and the seed genes to perform a drug-search. Finally, a Task with the drug-search results will be returned. ````python from drugstone import deep_search genes = [ "CFTR", "TGFB1", "SCNN1B", "DCTN4", "SCNN1A", "SCNN1G", "CLCA4", "TNFRSF1A", "FCGR2A" ] parameters = { "algorithm": "trustrank" } task = deep_search(genes, parameters) r = tasks.get_result() r.to_dict() r.download_json() # only with Python 3.6 r.create_upset_plot() ```` ## Available Parameters ```` parameters = { "identifier": "symbol", #("entrez" | "uniprot" | "ensg" will be supported in future versions) "algorithm": "adjacentDrugs", "trustrank" | "multisteiner" | "keypathwayminer" | "closeness" | "degree" | "proximity" | "betweenness", "ppiDataset": "NeDRex", "pdiDataset": "NeDRex", "resultSize": 20, "target": "drug" | "drug-target", "includeIndirectDrugs": True | False, "includeNonApprovedDrugs": True | False, "maxDeg": sys.maxsize, # filter out nodes with high degrees "hubPenalty": 0.0, # penalize hub nodes "filterPaths": True | False, # include only shortest connections in the result "damping_factor": 0.85, # only in trustrank "num_trees": 5, # only in multisteiner "tolerance": 10, # only in multisteiner "k": 5, # only in keypathwayminer } ```` For more information about the algorithms, please refer to <a href="https://drugst.one/doc#implementation_algorithms">https://drugst.one/doc#implementation_algorithms</a>. For more information abouyt the available dataset types, please refer to <a href="https://drugst.one/doc#implementation_datasources">https://drugst.one/doc#implementation_datasources</a>. ## class Task Represents a task. `get_result() -> TaskResult` \ Returns a TaskResult for the result of the task. `get_info() -> dict` \ Returns a dict with information about the task. `get_parameters() -> dict` \ Returns a dict with the parameters of the task. ## class TaskResult Represents the results of a task. `get_genes() -> dict` \ Returns a dict with the genes. `get_drugs() -> dict` \ Returns a dict with the drugs. `to_dict() -> dict` \ Returns a dict with the result. `to_pandas_dataframe() -> DataFrame` \ Returns a pandas DataFrame of the result. `download_json(path: str, name: str) -> None` \ Downloads a json file with the result. `download_genes_csv(path: str, name: str) -> None` \ Downloads a csv file with the genes of the result. `download_drugs_csv(path: str, name: str) -> None` \ Downloads a csv file with the drugs of the result. `download_edges_csv(path: str, name: str) -> None` \ Downloads a csv file with the edges of the result. `download_graph(path: str, name: str) -> None` \ Downloads a html file with a graph of the nodes. ## class Tasks Wraps a list of Task objects. `get_result() -> TasksResult` \ Returns a TasksResult for the list of tasks. `get_union() -> TaskResult` \ Returns a TaskResult with the union of the tasks. `get_intersection() -> TaskResult` \ Returns a TaskResult with the intersection of the tasks. ## class TasksResult Represents the results of a list of Task objects. `get_tasks_list() -> List[Task]` \ Returns the list of tasks. `to_dict() -> dict` \ Returns a dict with the results of the tasks. `download_json(path: str, name: str) -> None` \ Downloads a json file with the results. `create_upset_plot() -> None` \ Opens a new window with an upset plot of the results. Copyright: 2023 - Institute for Computational Systems Biology by Prof. Dr. Jan Baumbach \


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl drugstone-0.3.2:

    pip install drugstone-0.3.2.whl


نصب پکیج tar.gz drugstone-0.3.2:

    pip install drugstone-0.3.2.tar.gz