معرفی شرکت ها


dropblock-0.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Implementation of DropBlock: A regularization method for convolutional networks in PyTorch.
ویژگی مقدار
سیستم عامل -
نام فایل dropblock-0.3.0
نام dropblock
نسخه کتابخانه 0.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Miguel Varela Ramos
ایمیل نویسنده miguelvramos92@gmail.com
آدرس صفحه اصلی https://github.com/miguelvr/dropblock
آدرس اینترنتی https://pypi.org/project/dropblock/
مجوز MIT
# DropBlock ![build](https://travis-ci.org/miguelvr/dropblock.png?branch=master) Implementation of [DropBlock: A regularization method for convolutional networks](https://arxiv.org/pdf/1810.12890.pdf) in PyTorch. ## Abstract Deep neural networks often work well when they are over-parameterized and trained with a massive amount of noise and regularization, such as weight decay and dropout. Although dropout is widely used as a regularization technique for fully connected layers, it is often less effective for convolutional layers. This lack of success of dropout for convolutional layers is perhaps due to the fact that activation units in convolutional layers are spatially correlated so information can still flow through convolutional networks despite dropout. Thus a structured form of dropout is needed to regularize convolutional networks. In this paper, we introduce DropBlock, a form of structured dropout, where units in a contiguous region of a feature map are dropped together. We found that applying DropBlock in skip connections in addition to the convolution layers increases the accuracy. Also, gradually increasing number of dropped units during training leads to better accuracy and more robust to hyperparameter choices. Extensive experiments show that DropBlock works better than dropout in regularizing convolutional networks. On ImageNet classification, ResNet-50 architecture with DropBlock achieves 78.13% accuracy, which is more than 1.6% improvement on the baseline. On COCO detection, DropBlock improves Average Precision of RetinaNet from 36.8% to 38.4%. ## Installation Install directly from PyPI: pip install dropblock or the bleeding edge version from github: pip install git+https://github.com/miguelvr/dropblock.git#egg=dropblock **NOTE**: Implementation and tests were done in Python 3.6, if you have problems with other versions of python please open an issue. ## Usage For 2D inputs (DropBlock2D): ```python import torch from dropblock import DropBlock2D # (bsize, n_feats, height, width) x = torch.rand(100, 10, 16, 16) drop_block = DropBlock2D(block_size=3, drop_prob=0.3) regularized_x = drop_block(x) ``` For 3D inputs (DropBlock3D): ```python import torch from dropblock import DropBlock3D # (bsize, n_feats, depth, height, width) x = torch.rand(100, 10, 16, 16, 16) drop_block = DropBlock3D(block_size=3, drop_prob=0.3) regularized_x = drop_block(x) ``` Scheduled Dropblock: ```python import torch from dropblock import DropBlock2D, LinearScheduler # (bsize, n_feats, depth, height, width) loader = [torch.rand(20, 10, 16, 16) for _ in range(10)] drop_block = LinearScheduler( DropBlock2D(block_size=3, drop_prob=0.), start_value=0., stop_value=0.25, nr_steps=5 ) probs = [] for x in loader: drop_block.step() regularized_x = drop_block(x) probs.append(drop_block.dropblock.drop_prob) print(probs) ``` The drop probabilities will be: ``` >>> [0. , 0.0625, 0.125 , 0.1875, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25] ``` The user should include the `step()` call at the start of the batch loop, or at the the start of a model's `forward` call. Check [examples/resnet-cifar10.py](examples/resnet-cifar10.py) to see an implementation example. ## Implementation details We use `drop_prob` instead of `keep_prob` as a matter of preference, and to keep the argument consistent with pytorch's dropout. Regardless, everything else should work similarly to what is described in the paper. ## Benchmark Refer to [BENCHMARK.md](BENCHMARK.md) ## Reference [Ghiasi et al., 2018] DropBlock: A regularization method for convolutional networks ## TODO - [x] Scheduled DropBlock - [x] Get benchmark numbers - [x] Extend the concept for 3D images


نیازمندی

مقدار نام
- numpy
>=0.4.1 torch


نحوه نصب


نصب پکیج whl dropblock-0.3.0:

    pip install dropblock-0.3.0.whl


نصب پکیج tar.gz dropblock-0.3.0:

    pip install dropblock-0.3.0.tar.gz