معرفی شرکت ها


drfsc-0.0.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python package implementing a distributed randomised feature selection algorithm.
ویژگی مقدار
سیستم عامل -
نام فایل drfsc-0.0.7
نام drfsc
نسخه کتابخانه 0.0.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Mark Chiu Chong <mark.chiuchong@gmail.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/drfsc/
مجوز -
# drfsc [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) version: 0.0.6 An open-source library for a distributed randomised feature selection and classification algorithm. ## Authors and Contributors: [Mark Chiu Chong](https://github.com/markcc309), [Aida Brankovic](https://github.com/aibrank). ## Overview `drfsc` is an open-source Python implementation of the Distributed Randomised Feature Selection algorithm for Classification problems (D-RFSC). Beside addressing some of the shortcomings of the conventional FS method, its good performance has previously been shown on a range of benchmark datasets. However, to date no Python implementation is available. `drfsc` offers an easy to use, parallelized probabilistic population-based feature selection scheme that is flexible and can be adapted to a wide range of binary classification problems and is particularly useful for large data problems where model interpretability and model explainability is of high importance. It provides modules for model fitting, evaluation, and visualization. Tutorial notebooks are provided to demonstrate the use of the package. ## Installation The easiest way to install is from PyPI: just use `pip install drfsc` ## License We invite anyone interested to use and modify this code under a MIT license. ## Dependencies `drfsc` depends on the following packages: - [numpy](https://numpy.org/) - [pandas](https://pandas.pydata.org/) - [matplotlib](https://matplotlib.org/) - [scikit-learn](https://scikit-learn.org/stable/) - [statsmodels](https://www.statsmodels.org/stable/index.html) ## References The package has been developed based on research that came out of the Polytechnical University of Milan. The interested reader is referred to [2] for details related to the distribution procedure, and to [1] for a more thorough mathematical overview and for experimental comparisons to various alternate feature selection methods. [1] Brankovic, A., Falsone, A., Prandini, M., Piroddi, L. (2018). [A feature selection and classification algorithm based on randomized extraction of model populations](https://doi.org/10.1109/tcyb.2017.2682418) [2] Brankovic, A., Piroddi, L. (2019). [A distributed feature selection scheme with partial information sharing](https://doi.org/10.1007/s10994-019-05809-y) ## Citations This package is developed in CSIRO’s Australian e-Health Research Centre. If you use `drfsc` package in your research we would appreciate a citation to the appropriate paper(s): - For general use of `drfsc` package you can read/cite the original article. - For information/use of the Randomised Feature Selection and classification concept you can read/cite original article [1]. - For information/use of the Distributed Feature Selection architecture with partial information you can read/cite original article [2].


نیازمندی

مقدار نام
==1.23.4 numpy
==1.5.2 pandas
==22.3.1 pip
==1.1.2 scikit-learn
==65.5.0 setuptools
==0.13.2 statsmodels
==3.6.2 matplotlib
==0.10.2 toml
==0.37.1 wheel
==7.1.2 pytest


زبان مورد نیاز

مقدار نام
>=3.9.12 Python


نحوه نصب


نصب پکیج whl drfsc-0.0.7:

    pip install drfsc-0.0.7.whl


نصب پکیج tar.gz drfsc-0.0.7:

    pip install drfsc-0.0.7.tar.gz