معرفی شرکت ها


dreamerv2-2.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Mastering Atari with Discrete World Models
ویژگی مقدار
سیستم عامل -
نام فایل dreamerv2-2.2.0
نام dreamerv2
نسخه کتابخانه 2.2.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی http://github.com/danijar/dreamerv2
آدرس اینترنتی https://pypi.org/project/dreamerv2/
مجوز -
**Status:** Stable release [![PyPI](https://img.shields.io/pypi/v/dreamerv2.svg)](https://pypi.python.org/pypi/dreamerv2/#history) # Mastering Atari with Discrete World Models Implementation of the [DreamerV2][website] agent in TensorFlow 2. Training curves for all 55 games are included. <p align="center"> <img width="90%" src="https://imgur.com/gO1rvEn.gif"> </p> If you find this code useful, please reference in your paper: ``` @article{hafner2020dreamerv2, title={Mastering Atari with Discrete World Models}, author={Hafner, Danijar and Lillicrap, Timothy and Norouzi, Mohammad and Ba, Jimmy}, journal={arXiv preprint arXiv:2010.02193}, year={2020} } ``` [website]: https://danijar.com/dreamerv2 ## Method DreamerV2 is the first world model agent that achieves human-level performance on the Atari benchmark. DreamerV2 also outperforms the final performance of the top model-free agents Rainbow and IQN using the same amount of experience and computation. The implementation in this repository alternates between training the world model, training the policy, and collecting experience and runs on a single GPU. ![World Model Learning](https://imgur.com/GRC9QAw.png) DreamerV2 learns a model of the environment directly from high-dimensional input images. For this, it predicts ahead using compact learned states. The states consist of a deterministic part and several categorical variables that are sampled. The prior for these categoricals is learned through a KL loss. The world model is learned end-to-end via straight-through gradients, meaning that the gradient of the density is set to the gradient of the sample. ![Actor Critic Learning](https://imgur.com/wH9kJ2O.png) DreamerV2 learns actor and critic networks from imagined trajectories of latent states. The trajectories start at encoded states of previously encountered sequences. The world model then predicts ahead using the selected actions and its learned state prior. The critic is trained using temporal difference learning and the actor is trained to maximize the value function via reinforce and straight-through gradients. For more information: - [Google AI Blog post](https://ai.googleblog.com/2021/02/mastering-atari-with-discrete-world.html) - [Project website](https://danijar.com/dreamerv2/) - [Research paper](https://arxiv.org/pdf/2010.02193.pdf) ## Using the Package The easiest way to run DreamerV2 on new environments is to install the package via `pip3 install dreamerv2`. The code automatically detects whether the environment uses discrete or continuous actions. Here is a usage example that trains DreamerV2 on the MiniGrid environment: ```python import gym import gym_minigrid import dreamerv2.api as dv2 config = dv2.defaults.update({ 'logdir': '~/logdir/minigrid', 'log_every': 1e3, 'train_every': 10, 'prefill': 1e5, 'actor_ent': 3e-3, 'loss_scales.kl': 1.0, 'discount': 0.99, }).parse_flags() env = gym.make('MiniGrid-DoorKey-6x6-v0') env = gym_minigrid.wrappers.RGBImgPartialObsWrapper(env) dv2.train(env, config) ``` ## Manual Instructions To modify the DreamerV2 agent, clone the repository and follow the instructions below. There is also a Dockerfile available, in case you do not want to install the dependencies on your system. Get dependencies: ```sh pip3 install tensorflow==2.6.0 tensorflow_probability ruamel.yaml 'gym[atari]' dm_control ``` Train on Atari: ```sh python3 dreamerv2/train.py --logdir ~/logdir/atari_pong/dreamerv2/1 \ --configs atari --task atari_pong ``` Train on DM Control: ```sh python3 dreamerv2/train.py --logdir ~/logdir/dmc_walker_walk/dreamerv2/1 \ --configs dmc --task dmc_walker_walk ``` Monitor results: ```sh tensorboard --logdir ~/logdir ``` Generate plots: ```sh python3 common/plot.py --indir ~/logdir --outdir ~/plots \ --xaxis step --yaxis eval_return --bins 1e6 ``` ## Docker Instructions The [Dockerfile](https://github.com/danijar/dreamerv2/blob/main/Dockerfile) lets you run DreamerV2 without installing its dependencies in your system. This requires you to have Docker with GPU access set up. Check your setup: ```sh docker run -it --rm --gpus all tensorflow/tensorflow:2.4.2-gpu nvidia-smi ``` Train on Atari: ```sh docker build -t dreamerv2 . docker run -it --rm --gpus all -v ~/logdir:/logdir dreamerv2 \ python3 dreamerv2/train.py --logdir /logdir/atari_pong/dreamerv2/1 \ --configs atari --task atari_pong ``` Train on DM Control: ```sh docker build -t dreamerv2 . --build-arg MUJOCO_KEY="$(cat ~/.mujoco/mjkey.txt)" docker run -it --rm --gpus all -v ~/logdir:/logdir dreamerv2 \ python3 dreamerv2/train.py --logdir /logdir/dmc_walker_walk/dreamerv2/1 \ --configs dmc --task dmc_walker_walk ``` ## Tips - **Efficient debugging.** You can use the `debug` config as in `--configs atari debug`. This reduces the batch size, increases the evaluation frequency, and disables `tf.function` graph compilation for easy line-by-line debugging. - **Infinite gradient norms.** This is normal and described under loss scaling in the [mixed precision][mixed] guide. You can disable mixed precision by passing `--precision 32` to the training script. Mixed precision is faster but can in principle cause numerical instabilities. - **Accessing logged metrics.** The metrics are stored in both TensorBoard and JSON lines format. You can directly load them using `pandas.read_json()`. The plotting script also stores the binned and aggregated metrics of multiple runs into a single JSON file for easy manual plotting. [mixed]: https://www.tensorflow.org/guide/mixed_precision


نحوه نصب


نصب پکیج whl dreamerv2-2.2.0:

    pip install dreamerv2-2.2.0.whl


نصب پکیج tar.gz dreamerv2-2.2.0:

    pip install dreamerv2-2.2.0.tar.gz