معرفی شرکت ها


drdigit-brezniczky-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A digit doctoring detection package
ویژگی مقدار
سیستم عامل -
نام فایل drdigit-brezniczky-0.0.9
نام drdigit-brezniczky
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Janos Brezniczky
ایمیل نویسنده brezniczky@gmail.com
آدرس صفحه اصلی https://github.com/brezniczky/drdigit
آدرس اینترنتی https://pypi.org/project/drdigit-brezniczky/
مجوز -
DrDigit ======= DrDigit is a digit doctoring detection package at an early stage. Interested in contributing? Please feel free to contact me, e.g. by commenting on the issue "Contributors welcome!" at https://github.com/brezniczky/drdigit/issues/1. Requirements ------------ DrDigit requires Python 3.5 or later. Concept ------- The tests are based on the statistics of digits which are assumed to have a uniform distribution. Near-uniform distributions can be obtained by looking at the last digits of sufficiently large values - such as vote counts (possibly above 100). On a smaller scale, you can query for the probablity of a digit sequence using probability mass functions represented by Python functions. There are larger scale tests for a sequence of digit groups. This is so to support situations where different groups are expected to be doctored by different people - testing for an overarching, consistent anomaly could be too strict in such cases. Based on the current features (entropy, digit repetition, coincident digits in parallel sequences), it is possible to sort a data frame containing digit groups by probability, so then it is possible to inspect if there is any apparent sanity behind the doctoring. A couple of hints ----------------- * Handle results with care, **there is always some uncertainity** * Try to **focus** on interesting groups, this should yield much sharper results * When committing **Kaggle** scripts, switch off the on-disk caching of tests before committing, e.g. via ``` import drdigit as drd drd.set_option(physical_cache_path="") ``` You can find more about it via `help(drd.set_option)`. Quick start ----------- DrDigit can be installed using pip: $ pip install drdigit-brezniczky $ ipython Digit entropy behaves a little weirdly when different digit sequence lengths are considered - isn't the sequence 1, 2 as diverse as possible? Python 3.5.2 (default, Nov 12 2018, 13:43:14) Type 'copyright', 'credits' or 'license' for more information IPython 7.7.0 -- An enhanced Interactive Python. Type '?' for help. In [1]: import drdigit as drd In [2]: help(drd) In [3]: print(drd.get_entropy([1, 2])) 0.6931471805599453 In [4]: print(drd.get_entropy([1, 1, 2, 2])) 0.6931471805599453 Probabilities are often more suited for a comparison: In [6]: drd.prob_of_entr(2, drd.get_entropy([1, 2])) cdf for 2 was generated Out[6]: 1.0 In [7]: drd.prob_of_entr(4, drd.get_entropy([1, 1, 2, 2])) cdf for 4 was generated Out[7]: 0.0624 Indeed, the latter sequence is unusually repetitive. More examples to follow, for now you can have a look at the Kaggle notebook at https://www.kaggle.com/brezniczky/poland-2019-ep-elections-doctoring-quick-check or around https://github.com/brezniczky/ep_elections_2019_hun/blob/master/PL/ for instance in the `process_data.py` file. Some complicated (and - sorry, sometimes unreliabe/slightly outdated) details about the considerations/methodology and future ideas can be found in the [Hungarian elections document]( https://nbviewer.jupyter.org/github/brezniczky/ep_elections_2019_hun/blob/master/report.ipynb ) Tests ----- The few tests that there are can be run by `pytest`. For this, I would just use `virtualenvwrapper` and do something akin to $ mkvirtualenv drdigit_test $ pip install -r requirements/requirements_test.txt $ pytest from the directory of the `drdigit` clone.


نیازمندی

مقدار نام
==19.1.0 attrs
>=0.10.0 cycler
==2.0.7 deprecation
>=0.13.2 joblib
>=1.1.0 kiwisolver
>=3.0.3 matplotlib
>=1.17.0 numpy
>=0.23.4 pandas
>=2.4.0 pyparsing
>=2.8.0 python-dateutil
>=2019.1 pytz
>=1.2.1 scipy
>=1.12.0 six


نحوه نصب


نصب پکیج whl drdigit-brezniczky-0.0.9:

    pip install drdigit-brezniczky-0.0.9.whl


نصب پکیج tar.gz drdigit-brezniczky-0.0.9:

    pip install drdigit-brezniczky-0.0.9.tar.gz