معرفی شرکت ها


draupnir-0.0.27


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Ancestral sequence reconstruction using a tree structured Ornstein Uhlenbeck variational autoencoder
ویژگی مقدار
سیستم عامل -
نام فایل draupnir-0.0.27
نام draupnir
نسخه کتابخانه 0.0.27
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lys Sanz Moreta
ایمیل نویسنده lys.sanz.moreta@outlook.com
آدرس صفحه اصلی https://github.com/LysSanzMoreta/DRAUPNIR_ASR
آدرس اینترنتی https://pypi.org/project/draupnir/
مجوز -
DRAUPNIR: "Beta library version for performing ASR using a tree-structured Variational Autoencoder" <p align="center"> <img src="https://github.com/LysSanzMoreta/DRAUPNIR_ASR/blob/main/draupnir/src/draupnir/images/draupnir_logo.png" height="auto" width="790" style="border-radius:50%"> </p> **Extra requirements for tree inference:** #These are NOT necessary if you have your own tree file or for using the default datasets IQ-Tree: http://www.iqtree.org/doc/Quickstart ``` conda install -c bioconda iqtree ``` RapidNJ: https://birc.au.dk/software/rapidnj ``` conda config --add channels bioconda conda install rapidnj ``` **Extra requirements for fast patristic matrix construction** #Recommended if you have more than 200 sequences. The patristic matrix is constructed only once Install R (R version 4.1.2 (2021-11-01) -- "Bird Hippie" ) ``` sudo apt update & sudo apt upgrade sudo apt -y install r-base ``` together with ape 5.5 and TreeDist 2.3 libraries ``` install.packages(c("ape","TreeDist")) ``` **Draupnir pip install** ``` pip install draupnir ``` **Example** ``` See Draupnir_example.py ``` **Which guide to use?** By experience, use delta_map, the marginal results (Test folder) are the most stable. It is recommended to run the model both with the variational and the delta_map guides and compare outputs using the mutual information. If necessary run the variational guide longer than the delta_map, since it has more parameters to infere and takes longer. **How long should I run my model?** 0) Before training: - It is recommended to train for at least 10000 epochs in datasets <800 leaves. See article for inspiration, the runtimes where extended to achieve maximum benchmarking accuracy, but it should not be necessary. 1) While it is training: - Check for the Percent_ID.png plot, if the training accuracy has peaked to almost 100%, run for at least ~1000 epochs more to guarantee full learning - Check for stabilization of the error loss: ELBO_error.png - Check for stabilization of the entropy: Entropy_convergence.png 2) After training: - Observe the latent space: 1) t_SNE, UMAP and PCA plots: Is it organized by clades? Although, not every data set will present tight clustering of the tree clades though but there should be some organization <p align="center"> <img src="https://github.com/LysSanzMoreta/DRAUPNIR_ASR/blob/main/draupnir/src/draupnir/images/LatentBlactamase.png" alt="Latent space" width="300" /> </p> 2) Distances_GP_VAE_z_vs_branch_lengths_Pairwise_distance_INTERNAL_and_LEAVES plot: Is there a positive correlation? If there is not a good correlation but the train percent identity is high, it will still be a valid run - Observe the sampled training (leaves) sequences and test (internal) sequences: Navigate to the Train_argmax and Test_argmax folders and look for the .fasta files - Calculate mutual information: - First: Run Draupnir with the MAP & Marginal version and Variational version, or just the Variational - Second: Use the draupnir.calculate_mutual_information() with the paths to the folders with the trained runs. ![alt text](https://github.com/LysSanzMoreta/DRAUPNIR_ASR/blob/main/draupnir/src/draupnir/images/MI.png) **Datasets** #They are recommended to use with the pipeline, look into datasets.py for more details ``` dict_urls = { "aminopeptidase":"https://drive.google.com/drive/folders/1fLsOJbD1hczX15NW0clCgL6Yf4mnx_yl?usp=sharing", "benchmark_randall_original_naming":"https://drive.google.com/drive/folders/1oE5-22lqcobZMIguatOU_Ki3N2Fl9b4e?usp=sharing", "Coral_all":"https://drive.google.com/drive/folders/1IbfiM2ww5PDcDSpTjrWklRnugP8RdUTu?usp=sharing", "Coral_Faviina":"https://drive.google.com/drive/folders/1Ehn5xNNYHRu1iaf7vS66sbAESB-dPJRx?usp=sharing", "PDB_files_Draupnir_PF00018_116":"https://drive.google.com/drive/folders/1YJDS_oHHq-5qh2qszwk-CucaYWa9YDOD?usp=sharing", "PDB_files_Draupnir_PF00400_185": "https://drive.google.com/drive/folders/1LTOt-dhksW1ZsBjb2uzi2NB_333hLeu2?usp=sharing", "PF00096":"https://drive.google.com/drive/folders/103itCfxiH8jIjKYY9Cvy7pRGyDl9cnej?usp=sharing", "PF00400":"https://drive.google.com/drive/folders/1Ql10yTItcdX93Xpz3Oh-sl9Md6pyJSZ3?usp=sharing", "SH3_pf00018_larger_than_30aa":"https://drive.google.com/drive/folders/1Mww3uvF_WonpMXhESBl9Jjes6vAKPj5f?usp=sharing", "simulations_blactamase_1":"https://drive.google.com/drive/folders/1ecHyqnimdnsbeoIh54g2Wi6NdGE8tjP4?usp=sharing", "simulations_calcitonin_1":"https://drive.google.com/drive/folders/1jJ5RCfLnJyAq0ApGIPrXROErcJK3COvK?usp=sharing", "simulations_insulin_2":"https://drive.google.com/drive/folders/1xB03AF_DYv0EBTwzUD3pj03zBcQDDC67?usp=sharing", "simulations_PIGBOS_1":"https://drive.google.com/drive/folders/1KTzfINBVo0MqztlHaiJFoNDt5gGsc0dK?usp=sharing", "simulations_sirtuins_1":"https://drive.google.com/drive/folders/1llT_HvcuJQps0e0RhlfsI1OLq251_s5S?usp=sharing", "simulations_src_sh3_1":"https://drive.google.com/drive/folders/1tZOn7PrCjprPYmyjqREbW9PFTsPb29YZ?usp=sharing", "simulations_src_sh3_2":"https://drive.google.com/drive/folders/1ji4wyUU4aZQTaha-Uha1GBaYruVJWgdh?usp=sharing", "simulations_src_sh3_3":"https://drive.google.com/drive/folders/13xLOqW2ldRNm8OeU-bnp9DPEqU1d31Wy?usp=sharing" } ``` | Dataset | Number of leaves | Alignment lenght | Name | |:-------------------------------------------------:|:----------------:|:----------------:|-----------------------------------| | Randall's Coral fluorescent proteins (CFP) | 19 | 225 | benchmark_randall_original_naming | | Coral fluorescent proteins (CFP) Faviina subclade | 35 | 361 | Coral_Faviina | | Coral fluorescent proteins (CFP) subclade | 71 | 272 | Coral_all | | Simulation $\beta$-Lactamase | 32 | 314 | simulations_blactamase_1 | | Simulation Calcitonin | 50 | 71 | simulations_calcitonin_1 | | Simulation SRC-Kinase SH3 domain | 100 | 63 | simulations_src_sh3_1 | | Simulation Sirtuin | 150 | 477 | simulations_sirtuins_1 | | Simulation SRC-kinase SH3 domain | 200 | 128 | simulations_src_sh3_3 | | Simulation PIGBOS | 300 | 77 | simulations_PIGBOS_1 | | Simulation Insulin | 400 | 558 | simulations_insulin_2 | | Simulation SRC-kinase SH3 domain | 800 | 99 | simulations_src_sh3_2 | **What do the folders mean?** 1) If you selected **delta_map** guide: 1) Train_Plots: Contains information related to the inference of the train sequences (the leaves). They are samples obtained by using the MAP estimates of the logits. 2) Train_argmax_Plots: Single sequence per leaf obtained by the using the most likely amino acids indicated by the logits ("argmax the logits") 3) Test_Plots: Samples for the test sequences (ancestors). In this case they contain the sequences sampled using the marginal probability approach (equation 5 in the paper) 4) Test_argmax_Plots: Contains the most voted sequence from the samples in Test_Plots. 5) Test2_Plots: Samples for the test sequences (ancestors). In this case they contain the sequences sampled using the MAP estimated of the logits. 6) Test2_argmax_Plots: Samples for the test sequences (ancestors). In this case they contain the most likely amino acids indicated by the logits ("argmax the logits") (equation 4 in the paper) 2) If you selected **variational** guide: 1) Train_Plots: Contains information related to the inference of the train sequences (the leaves). They are samples obtained by using the MAP estimates of the logits. 2) Train_argmax_Plots: Single sequence per leaf obtained by the using the most likely amino acids indicated by the logits ("argmax the logits") 3) Test_Plots: Samples for the test sequences (ancestors). In this case they contain the sequences sampled using the full variational probability approach (equation 6 in the paper) 4) Test_argmax_Plots: Contains the most voted sequence from the samples in Test_Plots. 5) Test2_Plots == Test_Plots 6) Test2_argmax_Plots == Test_argmax_Plots **Where are my ancestral sequences?** - In each of the folders there should be a fasta file <dataset-name>_sampled_nodes_seq.fasta - Each of the sequences in the file should be identified as <node-name-input-tree>//<tree-level-order>\_sample\_<sample-number> >Node_A1//1.0_sample_0 **If this library is useful for your research please cite:** ``` @inproceedings{moreta2021ancestral, title={Ancestral protein sequence reconstruction using a tree-structured Ornstein-Uhlenbeck variational autoencoder}, author={Moreta, Lys Sanz and R{\o}nning, Ola and Al-Sibahi, Ahmad Salim and Hein, Jotun and Theobald, Douglas and Hamelryck, Thomas}, booktitle={International Conference on Learning Representations}, year={2021} } ```


نیازمندی

مقدار نام
>1.6.0 pyro-ppl
>1.78 biopython
>1.0.1 pandas
>3.3.4 matplotlib
>3.1.1 ete3
>0.6.1 dgl
>0.3.3 dill
>=0.11.2 seaborn
>0.4.4 pytorch-ignite
>1.5.4 scipy
>0.24.1 scikit-learn
>0.5.2 umap-learn
>=4.3.1 gdown
>2.0.0 ProDy
>=5.15.7 PyQt5
>=4.9.1 lxml


زبان مورد نیاز

مقدار نام
>=3.7, <4 Python


نحوه نصب


نصب پکیج whl draupnir-0.0.27:

    pip install draupnir-0.0.27.whl


نصب پکیج tar.gz draupnir-0.0.27:

    pip install draupnir-0.0.27.tar.gz