معرفی شرکت ها


dpyacl-0.3.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Distributed Python Active Learning library
ویژگی مقدار
سیستم عامل -
نام فایل dpyacl-0.3.3
نام dpyacl
نسخه کتابخانه 0.3.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alfredo Lorie
ایمیل نویسنده a24lorie@gmail.com
آدرس صفحه اصلی https://github.com/a24lorie/DPyACL
آدرس اینترنتی https://pypi.org/project/dpyacl/
مجوز GNU
*** DPyACL Distributed Python Framework for Active Learning May 2020 Alfredo Lorie Bernardo version 0.3.3 *** # Introduction `DPyACL` is a flexible Distributed Active Learning library written in Python, aimed to make active learning experiments simpler and faster. Its leverage Dask distributed features to execute active learning experiments computations among a cluster of computers, allowing to speed up computation and tackle scenarios where data doesn't fit in a single computer. It also has been developed with a modular object-oriented design to provide an intuitive, ease of use interface and to allow reuse, modification, and extensibility. It also offers full compatibility with libraries like NumPy, SciPy, Pandas, Scikit-learn and Keras. This library is available in PyPI and distributed under the GNU license.4 Up to date, DPyACL heavily uses Dask library to implement in a distributed and parallel fashion the the most significant strategies strategies that have appeared on the single_label-label. For future releases, we hope to include strategies strategies related with multi-label learning paradigms. # Download GitHub: <https://github.com/a24lorie/DPyACL> # Using DPyACL The fastest way to use `DPyACL` is from a Jupyter Notebook. ## Preparing an experiment When defining an Active Learning experiment `DPyACL` offers set pre-defined components that can be configured and combined by the user to better fit its needs. The required components to setup and experiment are listed below 1. **The Dataset** 2. **Labelled and unlabelled sets**: Optional - The experiment might be configured to randomly choose an initial labeled and unlabeled sets 2. **An Experiment**: HoldOut and KFold experiments are provided 3. **The AL scenario**: The current release provides a Pool Based Scenario 4. **The Machine Learning Technique**: It can be a machine learning technique from any library that provides an API compatible with the **fit**, **predict** and **predict_proba** definitions. Sklearn, Dask-ML, Keras are compatible 5. **The Evaluation Method(s)** 7. **The Query Strategy** 5. **The Stopping Criteria** 8. **The Oracle**: The current release provides a Simulated Oracle ### Configuring the experiment ```python ml_technique = LogisticRegression(solver='liblinear') stopping_criteria = MaxIteration(50) query_strategy = QueryMarginSampling() performance_metrics = [ Accuracy(), F1(average='macro'), Precision(average='macro'), Recall(average='macro')] experiment = HoldOutExperiment( client=None, X=_X, Y=_y, scenario_type=PoolBasedSamplingScenario, train_idx=train_idx, test_idx=test_idx, label_idx=label_idx, unlabel_idx=unlabel_idx, ml_technique=ml_technique, performance_metrics=performance_metrics, query_strategy=query_strategy, oracle=SimulatedOracle(labels=_y), stopping_criteria=stopping_criteria, self_partition=False ) ``` ### Execute the experiment ```python result = experiment.evaluate(verbose=True) ``` ### Analyze the experiment results ```python query_analyser = ExperimentAnalyserFactory.experiment_analyser( performance_metrics= [metric.metric_name for metric in performance_metrics], method_name=query_strategy.query_function_name, method_results=result, type="queries" ) # get a brief description of the experiment query_analyser.plot_learning_curves(title='Active Learning experiment results') ``` # Contribution If you find a bug, send a [pull request](https://github.com/a24lorie/PyACL/pulls) and we'll discuss things. If you are not familiar with "***pull request***" term I recommend reading the following [article](https://yangsu.github.io/pull-request-tutorial/) for better understanding


نحوه نصب


نصب پکیج whl dpyacl-0.3.3:

    pip install dpyacl-0.3.3.whl


نصب پکیج tar.gz dpyacl-0.3.3:

    pip install dpyacl-0.3.3.tar.gz