معرفی شرکت ها


dptools-0.4.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Data Preprocessing Tools
ویژگی مقدار
سیستم عامل -
نام فایل dptools-0.4.2
نام dptools
نسخه کتابخانه 0.4.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Nikita Kozodoi
ایمیل نویسنده n.kozodoi@icloud.com
آدرس صفحه اصلی https://github.com/kozodoi/dptools
آدرس اینترنتی https://pypi.org/project/dptools/
مجوز MIT
# dptools: data preprocessing functions for Python --- [![PyPI Latest Release](https://img.shields.io/pypi/v/dptools.svg)](https://pypi.org/project/dptools/) [![Python 3.7](https://img.shields.io/badge/python-3.7-blue.svg)](https://pypi.org/project/dptools/) [![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active) [![Licence](https://img.shields.io/github/license/mashape/apistatus.svg)](http://choosealicense.com/licenses/mit/) [![Build Status](https://travis-ci.org/kozodoi/dptools.svg?branch=master)](https://travis-ci.com/kozodoi/dptools) [![Downloads](https://img.shields.io/pypi/dm/dptools)](https://pypi.org/project/dptools/) --- ## Overview The `dptools` Python package provides helper functions to simplify common data processing tasks in a data science pipeline, including feature engineering, data aggregation, working with missing values and more. The package currently encompasses the following functions: - Feature engineering: - `add_date_features()`: create date and time-based features - `add_text_features()`: create text-based features (including counts and TF-IDF) - `aggregate_data()`: aggregate data and create features based on aggregated statistics - `encode_factors()`: perform label or dummy encoding of categorical features - Data processing: - `split_nested_features()`: split features nested in a single column - `fill_missings()`: replace missings with specific values - `correct_colnames()`: correct column names to be unique and remove foreign symbols - `print_missings()`: print information on features with missing values - `print_factor_levels()`: print levels of categorical features - Data cleaning: - `find_correlated_features()`: identify features with a high pairwise correlation - `find_constant_features()`: identify features with a single unique value - Import and versioning: - `read_csv_with_json()`: read CSV where some columns are in JSON format - `save_csv_version()`: save CSV with an automatically assigned version to prevent overwriting ## Installation The latest stable release of `dptools` can be installed from PyPI: ``` pip install dptools ``` You may also install the development version from Github: ``` pip install git+https://github.com/kozodoi/dptools.git ``` After the installation, you can import the included functions: ```py from dptools import * ``` ## Examples This section contains a few examples of using functions from `dptools` for different data preprocessing tasks. Please refer to the docstring documentation in the implemented functions for further examples. ### Creating a toy data set First, let us create a toy data frame to demonstrate the package functionality. ```py # import dependencies import pandas as pd import numpy as np # create data frame data = {'age': [27, np.nan, 30, 25, np.nan], 'height': [170, 168, 173, 177, 165], 'gender': ['female', 'male', np.nan, 'male', 'female'], 'income': ['high', 'medium', 'low', 'low', 'no income']} df = pd.DataFrame(data) ``` | age | height | gender | income | |---:| ---:| ---:| ---:| | 27.0 | 170 | female | high | | NaN | 168 | male | medium | | 30.0 | 173 | NaN | low | | 25.0 | 177 | male | low | | NaN | 165 | female | no income | ### Aggregating features ```py # aggregating the data from dptools import aggregate_data df_new = aggregate_data(df, group_var = 'gender', num_stats = ['mean', 'max'], fac_stats = 'mode') ``` | gender | age_mean | age_max | height_mean | height_max | income_mode | |---:| ---:| ---:| ---:| ---:| ---:| | female | 27.0 | 27.0 | 167.5 | 170 | 'high' | | male | 25.0 | 25.0 | 172.5 | 177 | 'low' | ### Creating text-based features ```py # creating text-based features from dptools import add_text_features df_new = add_text_features(df, text_vars = 'income') ``` | age | height | gender | income_word_count | income_char_count | income_tfidf_0 | ... | income_tfidf_3 | |---:| ---:| ---:| ---:| ---:| ---:| ---:| ---:| | 27.0 | 170 | female | 1 | 4 | 1.0 | ... | 0.0 | | NaN | 168 | male | 1 | 6 | 0.0 | ... | 1.0 | | 30.0 | 173 | NaN | 1 | 3 | 0.0 | ... | 0.0 | | 25.0 | 177 | male | 1 | 3 | 0.0 | ... | 0.0 | | NaN | 165 | female | 2 | 9 | 0.0 | ... | 0.0 | ### Working with missings ```py # print statistics on missing values from dptools import print_missings print_missings(df) ``` | | Total | Percent | |---:| ---:| ---:| | age | 2 | 0.4 | | gender | 1 | 0.2 | ### Finding correlated features ```py # displays one correlated feature from each pair from dptools import find_correlated_features feats = find_correlated_features(df, cutoff = 0.4, method = 'spearman') feats ``` > Found 1 correlated features. > ['age'] ### Data versioning ```py # first call saves df as 'data_v1.csv' from dptools import save_csv_version save_csv_version('data.csv', df, index = False) # second call saves df as 'data_v2.csv' as data_v1.csv already exists save_csv_version('data.csv', df, index = False) ``` ## Dependencies Installation requires Python 3.7+ and the following packages: - [numpy](https://www.numpy.org) - [pandas](https://pandas.pydata.org) - [sklearn](https://scikit-learn.org) - [scipy](https://scipy.org) ## Feedback In case you need help on the included data preprocessing functions or you want to report an issue, please do so at the corresponding [GitHub page](https://github.com/kozodoi/dptools/issues).


نحوه نصب


نصب پکیج whl dptools-0.4.2:

    pip install dptools-0.4.2.whl


نصب پکیج tar.gz dptools-0.4.2:

    pip install dptools-0.4.2.tar.gz