معرفی شرکت ها


dplab-0.0.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DPLab: Benchmarking Differential Privacy Aggregation Operations
ویژگی مقدار
سیستم عامل -
نام فایل dplab-0.0.7
نام dplab
نسخه کتابخانه 0.0.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده littleRound
ایمیل نویسنده xiaoyuanliu@berkeley.edu
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/dplab/
مجوز -
# DPLab: Benchmarking Differential Privacy Aggregation Operations This repo targets to provide a unified interface to access and evaluate the same aggregation functionalities in different open-source differential privacy (DP) libraries. With a simple CLI, one can choose the library, the aggregation function, and many other experimental parameters and apply the specified DP measurement to data stored in a `.csv` file. The repo also provides both synthetic and real-world example datasets for evaluation purposes. Evaluation results are stored in a `.json` file and metrics are provided for repeated experiments. The repo also provides a CLI tool to generate configuration groups for larger-scale comparison experiments. ## 1-Min Tutorial Get hands-on in 1 minute with [**our tutorial notebook**](https://colab.research.google.com/drive/1jtsiCW-pQwOlIlQHpKgN_PbSjpReiTIw?usp=sharing). ![dplab_architecture](./img/dplab_architecture.png) **Currently supported aggregation operations**: - COUNT - SUM - MEAN - VAR - MEDIAN - QUANTILE **Currently supported libraries**: - diffprivlib 0.5.2 [[Homepage](https://github.com/IBM/differential-privacy-library)] [[Example Usage](./src/dplab/library_workload/diffprivlib.py)] - python-dp 1.1.1 [[Homepage](https://github.com/OpenMined/PyDP)] [[Example Usage](./src/dplab/library_workload/pydp.py)] - opendp 0.6.1 [[Homepage](https://opendp.org/)] [[Example Usage](./src/dplab/library_workload/opendp.py)] - tmlt.analytics 0.4.1 [[Homepage](https://docs.tmlt.dev/analytics/latest/index.html)] [[Example Usage](./src/dplab/library_workload/tmlt.py)] - chorus 0.1.3 [[Homepage](https://github.com/uvm-plaid/chorus)] [[Example Usage](./src/dplab/library_workload/chorus.py)] ## Installation To install dplab, one can **use the package on pypi** ```sh pip install dplab ``` Or **with source code**: clone the repo, switch the working directory, and install the dependencies ```sh git clone git@github.com:camelop/dp_lab.git cd dp-lab pip install -e . ``` To use [tmlt](https://docs.tmlt.dev/analytics/latest/installation.html) ```sh export PYSPARK_PYTHON=/usr/bin/python3 sudo apt install openjdk-8-jre-headless pip3 install -i https://d3p0voevd56kj6.cloudfront.net python-flint pip3 install tmlt.analytics ``` To use [chorus](https://github.com/uvm-plaid/chorus), please make sure you have Java runtime installed. (If you have already installed tmlt, it should be fine.) ## How to run dp libraries in the benchmark Run a specific library with the CLI ```sh dplab_run <library> <operation> <input_file> <output_file> <other options> ``` For example: ```sh dplab_run pydp sum data/1.csv data/1.json -f -r 1000 ``` Other options include: - `mode`: Evaluation mode, one can choose from "plain" (no timing/mem measurement), "internal" (internal measurement), or "external" (external tracking). - `epsilon`: DP parameter, default is set to `1`. - `quant`: Quantile value for QUANTILE operation, a float number between 0 and 1. - `lb`: The optional value lower bound estimation used when applying certain differential privacy aggregations. - `ub`: The optional value upper bound estimation used when applying certain differential privacy aggregations. - `repeat`: How many time should the evaluation repeat. - `force`: Force to overwrite the output file. - `debug`: Include debugging information in the output file. - `python_command`: Python command used to run the script in the external mode. - `external_sample_interval`: timing/mem consumption sample interval in the external mode. For more information, please check [the main entry file](./src/dplab/main.py). ### Generating synthetic data ```sh # Make sure you are in the root directory of the repo # Data will be generated in the ./data/ directory # The procedure will generate about 28GB of data # To avoid the risk of running out of disk space, you can comment out the performance test lines (Line26-27) in SYN_TARGETS defined in the script python3 scripts/gen_data.py ``` ## How to run experiments in the benchmark Generate the experiment commands, this will generate an `./exp.db.json` file under the working directory (you can also use `--location` to specify a different place). ```sh dplab_exp plan --repeat 100 --group_num 100 ``` Queue the experiments for execution ```sh dplab_exp launch --debug ``` The command updates the results to `exp.db.json`. One can potentially view the results via ```sh python3 scripts/view_exp_db.py ```


نیازمندی

مقدار نام
- psutil
- numpy
- tinydb
- tqdm
- scipy
- jpype1
==0.5.2 diffprivlib
==1.1.1 python-dp
==0.6.1 opendp


نحوه نصب


نصب پکیج whl dplab-0.0.7:

    pip install dplab-0.0.7.whl


نصب پکیج tar.gz dplab-0.0.7:

    pip install dplab-0.0.7.tar.gz