معرفی شرکت ها


dpi-sc-1.2.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An end-to-end single-cell multimodal analysis model with deep parameter inference.
ویژگی مقدار
سیستم عامل -
نام فایل dpi-sc-1.2.3
نام dpi-sc
نسخه کتابخانه 1.2.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده studentiz
ایمیل نویسنده studentiz@live.com
آدرس صفحه اصلی https://github.com/studentiz/dpi
آدرس اینترنتی https://pypi.org/project/dpi-sc/
مجوز MIT
# Modeling and analyzing single-cell multimodal data with deep parametric inference The proliferation of single-cell multimodal sequencing technologies has enabled us to understand cellular heterogeneity with multiple views, providing novel and actionable biological insights into the disease-driving mechanisms. Here, we propose a comprehensive end-to-end single-cell multimodal data analysis framework named Deep Parametric Inference (DPI). The python packages, datasets and user-friendly manuals of DPI are freely available at https://github.com/studentiz/dpi. ## The dpi framework works with scanpy and supports the following single-cell multimodal analyses * Multimodal data integration * Multimodal data noise reduction * Cell clustering and visualization * Reference and query cell types * Cell state vector field visualization ## Pip install ```python pip install dpi-sc ``` ## Datasets The dataset participating in "Single-cell multimodal modeling with deep parametric inference" can be downloaded at [DPI data warehouse](http://101.34.64.251:88/) ## Tutorial We use Peripheral Blood Mononuclear Cell (PBMC) dataset to demonstrate the process of DPI analysis of single cell multimodal data. The following code is recommended to run on a computer with more than 64G memory. ### Import dependencies ```python import scanpy as sc import dpi ``` ### Retina image output (optional) ```python %matplotlib inline %config InlineBackend.figure_format = 'retina' ``` ### Load dataset ```python # The dataset can be downloaded from [Datasets] above. sc_data = sc.read_h5ad("PBMC_COVID19_Healthy_Annotated.h5ad") ``` ### Set marker collection ```python rna_markers = ["CCR7", "CD19", "CD3E", "CD4"] protein_markers = ["AB_CCR7", "AB_CD19", "AB_CD3", "AB_CD4"] ``` ### Preprocessing ```python dpi.preprocessing(sc_data) dpi.normalize(sc_data, protein_expression_obsm_key="protein_expression") sc_data.var_names_make_unique() sc.pp.highly_variable_genes( sc_data, n_top_genes=3000, flavor="seurat_v3", subset=False ) dpi.add_genes(sc_data, rna_markers) sc_data = sc_data[:,sc_data.var["highly_variable"]] dpi.scale(sc_data) ``` ### Prepare and run DPI model Configure DPI model parameters ```python dpi.build_mix_model(sc_data, net_dim_rna_list=[512, 128], net_dim_pro_list=[128], net_dim_rna_mean=128, net_dim_pro_mean=128, net_dim_mix=128, lr=0.0001) ``` Run DPI model ```python dpi.fit(sc_data, batch_size=256) ``` Visualize the loss ```python dpi.loss_plot(sc_data) ``` ### Save DPI model (optional) ```python dpi.saveobj2file(sc_data, "COVID19PBMC_healthy.dpi") #sc_data = dpi.loadobj("COVID19PBMC_healthy.dpi") ``` ### Visualize the latent space Extract latent spaces ```python dpi.get_spaces(sc_data) ``` Visualize the spaces ```python dpi.space_plot(sc_data, "mm_parameter_space", color="green", kde=True, bins=30) dpi.space_plot(sc_data, "rna_latent_space", color="orange", kde=True, bins=30) dpi.space_plot(sc_data, "pro_latent_space", color="blue", kde=True, bins=30) ``` ### Preparation for downstream analysis Extract features ```python dpi.get_features(sc_data) ``` Get denoised datas ```python dpi.get_denoised_rna(sc_data) dpi.get_denoised_pro(sc_data) ``` ### Cell clustering and visualization Cell clustering ```python sc.pp.neighbors(sc_data, use_rep="mix_features") dpi.umap_run(sc_data, min_dist=0.4) sc.tl.leiden(sc_data) ``` Cell cluster visualization ```python sc.pl.umap(sc_data, color="leiden") ``` ### Observe multimodal data markers RNA markers ```python dpi.umap_plot(sc_data, featuretype="rna", color=rna_markers, ncols=2) dpi.umap_plot(sc_data, featuretype="rna", color=rna_markers, ncols=2, layer="rna_denoised") ``` Protein markers ```python dpi.umap_plot(sc_data, featuretype="protein", color=protein_markers, ncols=2) dpi.umap_plot(sc_data, featuretype="protein", color=protein_markers, ncols=2, layer="pro_denoised") ``` ### Reference and query Reference objects need to be pre-set with cell labels. ```python sc.pl.umap(sc_data, color="initial_clustering", frameon=False, title="PBMC COVID19 Healthy labels") ``` Demonstrate reference and query capabilities with unannotated asymptomatic COVID-19 PBMCs. ```python # The dataset can be downloaded from [Datasets] above. filepath = "COVID19_Asymptomatic.h5ad" sc_data_COVID19_Asymptomatic = sc.read_h5ad(filepath) ``` Unannotated data also needs to be normalized. ```python dpi.normalize(sc_data_COVID19_Asymptomatic, protein_expression_obsm_key="protein_expression") ``` Referenced and queried objects require alignment features. ```python sc_data_COVID19_Asymptomatic = sc_data_COVID19_Asymptomatic[:,sc_data.var.index] ``` Run the automated annotation function. ```python dpi.annotate(sc_data, ref_labelname="initial_clustering", sc_data_COVID19_Asymptomatic) ``` Visualize the annotated object. ```python sc.pl.umap(sc_data_COVID19_Asymptomatic, color="labels", frameon=False, title="PBMC COVID19 Asymptomatic Annotated") ``` ### Cell state vector field Simulate and visualize the cellular state when the CCR7 protein is amplified 2-fold. ```python dpi.cell_state_vector_field(sc_data, feature="AB_CCR7", amplitude=2, obs="initial_clustering", featuretype="protein") ```


نیازمندی

مقدار نام
>=2.4.2 bokeh
>=9.0.1 Pillow
>=1.16.0 six
>2.0.0 cloudpickle
>=0.1.4 scikit-misc
>=2.7.0 tensorflow
>=2.7.0 keras
>=0.8.8 leidenalg
>=3.5.1 matplotlib
>=1.21.5 numpy
>=1.4.1 pandas
>=1.5.7 PhenoGraph
>=1.8.2 scanpy
>=0.5.6 scikit-bio
>=1.0.2 scikit-learn
>=1.8.0 scipy
>=0.11.2 seaborn
>=0.13.1 statsmodels
>=0.5.2 umap-learn


زبان مورد نیاز

مقدار نام
>=3.8.12 Python


نحوه نصب


نصب پکیج whl dpi-sc-1.2.3:

    pip install dpi-sc-1.2.3.whl


نصب پکیج tar.gz dpi-sc-1.2.3:

    pip install dpi-sc-1.2.3.tar.gz