معرفی شرکت ها


dover-lap-1.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Combine overlap-aware diarization output RTTMs
ویژگی مقدار
سیستم عامل -
نام فایل dover-lap-1.2.0
نام dover-lap
نسخه کتابخانه 1.2.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Desh Raj
ایمیل نویسنده r.desh26@gmail.com
آدرس صفحه اصلی https://github.com/desh2608/dover-lap
آدرس اینترنتی https://pypi.org/project/dover-lap/
مجوز Apache-2.0 License
# DOVER-Lap Official implementation for [DOVER-Lap: A method for combining overlap-aware diarization outputs](https://arxiv.org/pdf/2011.01997.pdf). ## Installation ```shell pip install dover-lap ``` ## How to run After installation, run ```shell dover-lap [OPTIONS] OUTPUT_RTTM [INPUT_RTTMS]... ``` Example: ```shell dover-lap egs/ami/rttm_dl_test egs/ami/rttm_test_* ``` ## Usage instructions ```shell Usage: dover-lap [OPTIONS] OUTPUT_RTTM [INPUT_RTTMS]... Apply the DOVER-Lap algorithm on the input RTTM files. Options: --custom-weight TEXT Weights for input RTTMs --dover-weight FLOAT DOVER weighting factor [default: 0.1] --weight-type [rank|custom] Specify whether to use rank weighting or provide custom weights [default: rank] --second-maximal If this flag is set, run a second iteration of the maximal matching for greedy label mapping [default: False] --label-mapping [hungarian|greedy] Choose label mapping algorithm to use [default: greedy] --random-seed INTEGER -c, --channel INTEGER Use this value for output channel IDs [default: 1] -u, --uem-file PATH UEM file path --help Show this message and exit. ``` **Note:** 1. If `--weight-type custom` is used, then `--custom-weight` must be provided. For example: ```shell dover-lap egs/ami/rttm_dl_test egs/ami/rttm_test_* --weight-type custom --custom-weight '[0.4,0.3,0.3]' ``` 2. `label-mapping` can be set to `greedy` (default) or `hungarian`, which is a modified version of the mapping technique originally proposed in [DOVER](https://arxiv.org/abs/1909.08090). ## Results We provide a sample result on the AMI mix-headset test set. The results can be obtained using [`spyder`](https://github.com/desh2608/spyder), which is automatically installed with `dover-lap`: ```shell dover-lap egs/ami/rttm_dl_test egs/ami/rttm_test_* spyder egs/ami/ref_rttm_test egs/ami/rttm_dl_test ``` and similarly for the input hypothesis. The DER results are shown below. | | MS | FA | Conf. | DER | |-----------------------------------|:-----:|:----:|:-----:|:-----:| | Overlap-aware VB resegmentation | 9.84 | **2.06** | 9.60 | 21.50 | | Overlap-aware spectral clustering | 11.48 | 2.27 | 9.81 | 23.56 | | Region Proposal Network | **9.49** | 7.68 | 8.25 | 25.43 | | DOVER-Lap (Hungarian mapping) | 9.81 | 2.76 | 8.17 | 20.73 | | DOVER-Lap (Greedy mapping)* | 9.71 | 3.02 | **7.68** | **20.40** | _* The Greedy label mapping is exponential in number of inputs (see [this paper](https://arxiv.org/abs/2104.01954))._ ## Running time The algorithm is implemented in pure Python with NumPy for tensor computations. The time complexity is expected to increase exponentially with the number of inputs, but it should be reasonable for combining up to 10 input hypotheses. For combining more than 10 inputs, we recommend setting `--label-mapping hungarian`. For smaller number of inputs (up to 5), the algorithm should take only a few seconds to run on a laptop. ## Combining 2 systems with DOVER-Lap DOVER-Lap is meant to be used to combine **more than 2 systems**, since black-box voting between 2 systems does not make much sense. Still, if 2 systems are provided as input, we fall back on the Hungarian algorithm for label mapping, since it is provably optimal for this case. Both the systems are assigned equal weights, and in case of voting conflicts, the region is assigned to both labels. This is not the intended use case and will almost certainly lead to performance degradation. ## Citation ``` @article{Raj2021Doverlap, title={{DOVER-Lap}: A Method for Combining Overlap-aware Diarization Outputs}, author={D.Raj and P.Garcia and Z.Huang and S.Watanabe and D.Povey and A.Stolcke and S.Khudanpur}, journal={2021 IEEE Spoken Language Technology Workshop (SLT)}, year={2021} } @article{Raj2021ReformulatingDL, title={Reformulating {DOVER-Lap} Label Mapping as a Graph Partitioning Problem}, author={Desh Raj and S. Khudanpur}, journal={INTERSPEECH}, year={2021}, } ``` ## Contact For issues/bug reports, please raise an Issue in this repository, or reach out to me at `draj@cs.jhu.edu`.


نیازمندی

مقدار نام
>=3.0.1 intervaltree
>=1.18.1 numpy
>=7.1.2 click
>=1.5.4 scipy
>=0.4.0 spy-der


نحوه نصب


نصب پکیج whl dover-lap-1.2.0:

    pip install dover-lap-1.2.0.whl


نصب پکیج tar.gz dover-lap-1.2.0:

    pip install dover-lap-1.2.0.tar.gz