معرفی شرکت ها


dossier.models-0.6.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Active learning models
ویژگی مقدار
سیستم عامل -
نام فایل dossier.models-0.6.9
نام dossier.models
نسخه کتابخانه 0.6.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Diffeo, Inc.
ایمیل نویسنده support@diffeo.com
آدرس صفحه اصلی http://github.com/dossier/dossier.models
آدرس اینترنتی https://pypi.org/project/dossier.models/
مجوز MIT
`dossier.models` is a Python package that provides experimental active learning models. They are meant to be used as search engines through `dossier.web` web services. ### Installation `dossier.models` is on PyPI and can be installed with `pip`: ```bash pip install dossier.models ``` Currently, `dossier.models` requires Python 2.7. It is not yet Python 3 compatible. ### Documentation API documentation with examples is available as part of the Dossier Stack documentation: [http://dossier-stack.readthedocs.org](http://dossier-stack.readthedocs.org#module-dossier.models) ### Running a simple example `dossier.models` comes with an example web application that demonstrates how to use all of the Dossier Stack components to do active learning. The following is a step-by-step guide to get you up and running with a simple example of SortingDesk. This guide assumes basic familiarity with standard Python tools like `pip` and `virtualenv`. This guide also requires a database of some sort to store data. You can use any of the backends supported by [kvlayer](https://github.com/diffeo/kvlayer) (like PostgreSQL, HBase or MySQL). For this guide, we'll use Redis since it requires very little setup. Just make sure it is installed and running on your system. Here are a couple of screenshots of SortingDesk in action: [![SortingDesk at rest](http://i.imgur.com/I0qT4M9s.png)](http://i.imgur.com/I0qT4M9.png) [![SortingDesk drag & drop](http://i.imgur.com/Uxeksx5s.png)](http://i.imgur.com/Uxeksx5.png) First, you should create a new Python virtual environment and install `dossier.models` from PyPI: ```bash $ virtualenv dossier $ source ./dossier/bin/activate $ pip install dossier.models ``` Depending upon your system setup, this may take a bit of time since `dossier.models` depends on `numpy`, `scipy` and `scikit-learn`. Now verify that `dossier.models` is installed correctly: ```bash $ python -c 'import dossier.models' ``` If all is well, then the command should complete successfully without any output. Next, we need to setup configuration so that Dossier Stack knows which database to use and which indexes to create on feature collections. You can grab a sample configuration from GitHub: ```bash $ curl -O https://raw.githubusercontent.com/dossier/dossier.models/master/data/config.yaml ``` The config looks like this: ```yaml kvlayer: app_name: dossier namespace: models storage_type: redis storage_addresses: ['localhost:6379'] dossier.store: feature_indexes: ['name', 'keywords'] ``` The first section configures your database credentials. This config assumes you're using Redis running on `localhost` on port `6379` (the default). The second section tells Dossier Stack which indexes to create on feature collections. This configuration is dependent on the features in your data. In this sample configuration, we've chosen `name` and `keywords` because both are features in the sample data set. To download and load the sample data set, grab it from GitHub and use the `dossier.store` command to load it: ```bash $ curl -O https://raw.githubusercontent.com/dossier/dossier.models/master/data/example.fc $ dossier.store -c config.yaml load --id-feature content_id example.fc ``` The `dossier.store` command allows you to interact with feature collections stored in your database. The `--id-feature` flag tells `dossier.store` to use the value of the `content_id` feature as the feature collection's primary key. If this flag is omitted, then a `uuid` is generated instead. You can confirm that data was added to your database with the `ids` command: ```bash $ dossier.store -c config.yaml ids doc11 doc12 doc21 doc22 doc23 ... ``` Finally, you can run the web application bundled with `dossier.models`: ```bash $ dossier.models -c config.yaml ``` Open your browser to [http://localhost:8080/SortingDesk](http://localhost:8080/SortingDesk) to see an example of `SortingDesk` with the sample data. If you click on the `X` link on an item in the queue, a negative label will be added between it and the query indicated at the top of the page. Or you can drag an item from the queue into a bin---or drop it anywhere on the body page to create a new bin. Bins can also be dragged on to other bins to merge them. Go ahead and try it. You can confirm that a label was made with the `dossier.label` command: ```bash $ dossier.label -c config.yaml list Label(doc22, doc42, annotator=unknown, 2014-11-26 16:02:01, value=CorefValue.Negative) ``` You should also be able to see labels being added in the output of the `dossier.models` command if you're running it in your terminal. There is also a simpler example using plain `SortingQueue` available at [http://localhost:8080/SortingQueue](http://localhost:8080/SortingQueue).


نحوه نصب


نصب پکیج whl dossier.models-0.6.9:

    pip install dossier.models-0.6.9.whl


نصب پکیج tar.gz dossier.models-0.6.9:

    pip install dossier.models-0.6.9.tar.gz