معرفی شرکت ها


dosma-0.1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An AI-powered open-source medical image analysis toolbox
ویژگی مقدار
سیستم عامل -
نام فایل dosma-0.1.2
نام dosma
نسخه کتابخانه 0.1.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Arjun Desai
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/ad12/DOSMA
آدرس اینترنتی https://pypi.org/project/dosma/
مجوز GNU
# DOSMA: Deep Open-Source Medical Image Analysis [![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) ![GitHub Workflow Status](https://img.shields.io/github/workflow/status/ad12/DOSMA/CI) [![codecov](https://codecov.io/gh/ad12/DOSMA/branch/master/graph/badge.svg?token=X2FRQJHV2M)](https://codecov.io/gh/ad12/DOSMA) [![Documentation Status](https://readthedocs.org/projects/dosma/badge/?version=latest)](https://dosma.readthedocs.io/en/latest/?badge=latest) [Documentation](http://dosma.readthedocs.io/) | [Questionnaire](https://forms.gle/sprthTC2swyt8dDb6) | [DOSMA Basics Tutorial](https://colab.research.google.com/drive/1zY5-3ZyTBrn7hoGE5lH0IoQqBzumzP1i?usp=sharing) DOSMA is an AI-powered Python library for medical image analysis. This includes, but is not limited to: - image processing (denoising, super-resolution, registration, segmentation, etc.) - quantitative fitting and image analysis - anatomical visualization and analysis (patellar tilt, femoral cartilage thickness, etc.) We hope that this open-source pipeline will be useful for quick anatomy/pathology analysis and will serve as a hub for adding support for analyzing different anatomies and scan sequences. ## Installation DOSMA requires Python 3.6+. The core module depends on numpy, nibabel, nipype, pandas, pydicom, scikit-image, scipy, PyYAML, and tqdm. Additional AI features can be unlocked by installing tensorflow and keras. To enable built-in registration functionality, download [elastix](https://elastix.lumc.nl/download.php). Details can be found in the [setup documentation](https://dosma.readthedocs.io/en/latest/general/installation.html#setup). To install DOSMA, run: ```bash pip install dosma # To install with AI support pip install dosma[ai] ``` If you would like to contribute to DOSMA, we recommend you clone the repository and install DOSMA with `pip` in editable mode. ```bash git clone git@github.com:ad12/DOSMA.git cd DOSMA pip install -e '.[dev,docs]' make dev ``` To run tests, build documentation and contribute, run ```bash make autoformat test build-docs ``` ## Features ### Simplified, Efficient I/O DOSMA provides efficient readers for DICOM and NIfTI formats built on nibabel and pydicom. Multi-slice DICOM data can be loaded in parallel with multiple workers and structured into the appropriate 3D volume(s). For example, multi-echo and dynamic contrast-enhanced (DCE) MRI scans have multiple volumes acquired at different echo times and trigger times, respectively. These can be loaded into multiple volumes with ease: ```python import dosma as dm multi_echo_scan = dm.load("/path/to/multi-echo/scan", group_by="EchoNumbers", num_workers=8, verbose=True) dce_scan = dm.load("/path/to/dce/scan", group_by="TriggerTime") ``` ### Data-Embedded Medical Images DOSMA's [MedicalVolume](https://dosma.readthedocs.io/en/latest/generated/dosma.MedicalVolume.html#dosma.MedicalVolume) data structure supports array-like operations (arithmetic, slicing, etc.) on medical images while preserving spatial attributes and accompanying metadata. This structure supports NumPy interoperability, intelligent reformatting, fast low-level computations, and native GPU support. For example, given MedicalVolumes `mvA` and `mvB` we can do the following: ```python # Reformat image into Superior->Inferior, Anterior->Posterior, Left->Right directions. mvA = mvA.reformat(("SI", "AP", "LR")) # Get and set metadata study_description = mvA.get_metadata("StudyDescription") mvA.set_metadata("StudyDescription", "A sample study") # Perform NumPy operations like you would on image data. rss = np.sqrt(mvA**2 + mvB**2) # Move to GPU 0 for CuPy operations mv_gpu = mvA.to(dosma.Device(0)) # Take slices. Metadata will be sliced appropriately. mv_subvolume = mvA[10:20, 10:20, 4:6] ``` ### Built-in AI Models DOSMA is built to be a hub for machine/deep learning models. A complete list of models and corresponding publications can be found [here](https://dosma.readthedocs.io/en/latest/models.html). We can use one of the knee segmentation models to segment a MedicalVolume `mv` and model `weights` [downloaded locally](https://dosma.readthedocs.io/en/latest/installation.html#segmentation): ```python from dosma.models import IWOAIOAIUnet2DNormalized # Reformat such that sagittal plane is last dimension. mv = mv.reformat(("SI", "AP", "LR")) # Do segmentation model = IWOAIOAIUnet2DNormalized(input_shape=mv.shape[:2] + (1,), weights_path=weights) masks = model.generate_mask(mv) ``` ### Parallelizable Operations DOSMA supports parallelization for compute-heavy operations, like curve fitting and image registration. Image registration is supported thru the [elastix/transformix](https://elastix.lumc.nl/download.php) libraries. For example we can use multiple workers to register volumes to a target, and use the registered outputs for per-voxel monoexponential fitting: ```python # Register images mvA, mvB, mvC to target image mv_tgt in parallel _, (mvA_reg, mvB_reg, mvC_reg) = dosma.register( mv_tgt, moving=[mvA, mvB, mvC], parameters="/path/to/elastix/registration/file", num_workers=3, return_volumes=True, show_pbar=True, ) # Perform monoexponential fitting. def monoexponential(x, a, b): return a * np.exp(b*x) fitter = dosma.CurveFitter( monoexponential, num_workers=4, p0={"a": 1.0, "b": -1/30}, ) popt, r2 = fitter.fit(x=[1, 2, 3, 4], [mv_tgt, mvA_reg, mvB_reg, mvC_reg]) a_fit, b_fit = popt[..., 0], popt[..., 1] ``` ## Citation ``` @inproceedings{desai2019dosma, title={DOSMA: A deep-learning, open-source framework for musculoskeletal MRI analysis}, author={Desai, Arjun D and Barbieri, Marco and Mazzoli, Valentina and Rubin, Elka and Black, Marianne S and Watkins, Lauren E and Gold, Garry E and Hargreaves, Brian A and Chaudhari, Akshay S}, booktitle={Proc 27th Annual Meeting ISMRM, Montreal}, pages={1135}, year={2019} } ``` In addition to DOSMA, please also consider citing the work that introduced the method used for analysis.


نیازمندی

مقدار نام
- matplotlib
- numpy
- h5py
- natsort
- nested-lookup
- nibabel
- nipype
- packaging
- pandas
>=1.6.0 pydicom
- scikit-image
- scipy
- seaborn
- openpyxl
- Pmw
- PyYAML
- tabulate
- termcolor
>=4.42.0 tqdm
<=2.4.1 tensorflow
<=2.4.3 keras
- coverage
- flake8
- flake8-bugbear
- flake8-comprehensions
- isort
==21.4b2 black
==8.0.2 click
- simpleitk
- sphinx
- sphinxcontrib.bibtex
- m2r2
<=2.4.1 tensorflow
<=2.4.3 keras
- sigpy
<2.0.0,>=0.8.1 mistune
- sphinx
- sphinxcontrib.bibtex
- m2r2


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl dosma-0.1.2:

    pip install dosma-0.1.2.whl


نصب پکیج tar.gz dosma-0.1.2:

    pip install dosma-0.1.2.tar.gz