معرفی شرکت ها


dorchester-0.6.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A toolkit for making dot-density maps in Python
ویژگی مقدار
سیستم عامل -
نام فایل dorchester-0.6.0
نام dorchester
نسخه کتابخانه 0.6.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Chris Amico
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/eyeseast/dorchester
آدرس اینترنتی https://pypi.org/project/dorchester/
مجوز Apache License, Version 2.0
# dorchester [![PyPI](https://img.shields.io/pypi/v/dorchester.svg)](https://pypi.org/project/dorchester/) [![Changelog](https://img.shields.io/github/v/release/eyeseast/dorchester?include_prereleases&label=changelog)](https://github.com/eyeseast/dorchester/releases) [![Tests](https://github.com/eyeseast/dorchester/workflows/Test/badge.svg)](https://github.com/eyeseast/dorchester/actions?query=workflow%3ATest) [![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/eyeseast/dorchester/blob/master/LICENSE) A tool for making dot-density maps in Python. ## Caveat emptor This is very alpha right now. Use at your own risk and evaluate any editorial usage of this of this library before publishing. ## Installation Install this tool using `pip`: $ pip install dorchester ## Usage The main command is `dorchester plot`. That takes an input file, an output file and one or more property keys to extract population counts. ```sh dorchester plot --help Usage: dorchester plot [OPTIONS] SOURCE DEST Generate data for a dot-density map. Input may be any GIS format readable by Fiona (Shapefile, GeoJSON, etc). Options: -k, --key TEXT Property name for a population. Use multiple to map different population classes. -f, --format [csv|geojson|null] Output format. If not given, will guess based on output file extension. -m, --mode [w|a|x] File mode for destination [default: w] --fid TEXT Use a property key (instead of feature.id) to uniquely identify each feature --coerce Coerce properties passed in --key to integers. BE CAREFUL. This could cause incorrect results if misused. --progress Show a progress bar [default: False] -m, --multiprocessing Use multiprocessing --help Show this message and exit. ``` Input can be in any format readable by [Fiona](https://fiona.readthedocs.io/en/stable/index.html), such as Shapefiles and GeoJSON. The input file needs to contain both population data and boundaries. You may need to join different files together before plotting with `dorchester`. Output format (`--format`) can be CSV or GeoJSON (more formats coming soon). For GeoJSON, the output will be a stream of newline-delimited `Point` features, like this: ```json {"type": "Feature", "geometry": {"type": "Point", "coordinates": [76, 38]}, "properties": {"group": "population", "fid": 1}} {"type": "Feature", "geometry": {"type": "Point", "coordinates": [77, 39]}, "properties": {"group": "population", "fid": 1}} {"type": "Feature", "geometry": {"type": "Point", "coordinates": [78, 37]}, "properties": {"group": "population", "fid": 1}} ``` This will be _big_ files, because we are creating a point for every individual. Massachusetts, for example, had a population of 6.631 million in 2010, which means a dot density CSV file will be 6,336,107 lines long and 305 mb. Each key (`--key`) should correspond to a property on each feature whose value is a whole number. In a block like this, use `--key POP10` to extract population: ```json { "geometry": { "coordinates": [...], "type": "Polygon" }, "id": "0", "properties": { "BLOCKCE": "4023", "BLOCKID10": "250010112004023", "COUNTYFP10": "001", "HOUSING10": 16, "PARTFLG": "N", "POP10": 12, "STATEFP10": "25", "TRACTCE10": "011200" }, "type": "Feature" } ``` You can pass multiple `--key` options to create different groups that will be layered together. This is how you would create a map showing different racial groups, for example. The `--mode` option controls how the output file is opened: - `w` will create or overwrite the output file - `a` will append to an existing file - `x` will try to create a new file and fail if that file already exists Setting `--fid` will use a property key to identify each feature, instead of the feature's `id` field (which is often missing, or will be an index number in shapefiles). In the Census block example above, `BLOCKID10` will uniquely identify this block, while `id: 0` only identifies it as the first feature in its source shapefile. For data sources where properties are encoded as strings, the `--coerce` option will recast anything passed via `--key` to integers. Be careful with this option, as it involves changing data. It will fail (and stop plotting) if it encounters something that can't be coerced into an integer. Use the `--progress` flag to show a progress bar. This is off by default. Use `-m` or `--multiprocessing` to use Python's [multiprocessing](https://docs.python.org/3/library/multiprocessing.html) module to significantly speed up point generation. This will try to use every processor on your machine instead of just one. ## Putting points on a map For small-ish areas, QGIS will render lots of points just fine. Generate points, and load the output as a delimited or GeoJSON file. To build an interactive dot density map, you can use [tippecanoe](https://github.com/mapbox/tippecanoe) to generate an MBTiles file, which can be uploaded to Mapbox (or possibly other hosting providers). This has worked for me: ```sh tippecanoe -zg -o points.mbtiles --drop-densest-as-needed --extend-zooms-if-still-dropping points.csv ``` ## About the name [Dorchester](https://en.wikipedia.org/wiki/Dorchester,_Boston) is the largest and most diverse neighborhood in Boston, Massachusetts, and is often referred to as Dot. The name is also a nod to [Englewood](https://github.com/newsapps/englewood), built by the Chicago Tribune News Apps team. This is, hopefully, a worthy successor. ## Development To contribute to this tool, first checkout the code. Then create a new virtual environment: cd dorchester python -m venv .venv source .venv/bin/activate Or if you are using `pipenv`: pipenv shell Now install the dependencies and tests: pip install -e '.[test]' To run the tests: pytest


نیازمندی

مقدار نام
- click
- click-default-group
- fiona
- geojson
- numpy
- shapely
- tqdm
- jupyter
- matplotlib
- descartes
- pytest
- pytest-xdist


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl dorchester-0.6.0:

    pip install dorchester-0.6.0.whl


نصب پکیج tar.gz dorchester-0.6.0:

    pip install dorchester-0.6.0.tar.gz