## docanalysis
`docanalysis` is a Command Line Tool that ingests corpora [(CProjects)](https://github.com/petermr/tigr2ess/blob/master/getpapers/TUTORIAL.md#cproject-and-ctrees) and carries out text-analysis of documents, including
- sectioning
- NLP/text-mining
- dictionary generation
Besides the bespoke code, it uses [NLTK](https://www.nltk.org/) and other Python tools for many operations, and [spaCy](https://spacy.io/) or [scispaCy](https://allenai.github.io/scispacy/) for extraction and annotation of entities. Outputs summary data and word-dictionaries.
### Install `docanalysis`
You can download `docanalysis` from PYPI.
```
pip install docanalysis
```
If you are on a Mac
```
pip3 install docanalysis
```
Download python from: [https://www.python.org/downloads/](https://www.python.org/downloads/) and select the option `Add Python to Path while installing`. Make sure `pip` is installed along with python. Check out [https://pip.pypa.io/en/stable/installation/](https://pip.pypa.io/en/stable/installation/) if you have difficulties installing pip.
### Run `docanalysis`
`docanalysis --help` should list the flags we support and their use.
```
usage: docanalysis.py [-h] [--run_pygetpapers] [--make_section] [-q QUERY] [-k HITS] [--project_name PROJECT_NAME] [-d DICTIONARY] [-o OUTPUT]
[--make_ami_dict MAKE_AMI_DICT] [--search_section [SEARCH_SECTION [SEARCH_SECTION ...]]] [--entities [ENTITIES [ENTITIES ...]]]
[--spacy_model SPACY_MODEL] [--html HTML] [--synonyms SYNONYMS] [--make_json MAKE_JSON] [--search_html] [--extract_abb EXTRACT_ABB]
[-l LOGLEVEL] [-f LOGFILE]
Welcome to docanalysis version 0.1.3. -h or --help for help
optional arguments:
-h, --help show this help message and exit
--run_pygetpapers [Command] downloads papers from EuropePMC via pygetpapers
--make_section [Command] makes sections; requires a fulltext.xml in CTree directories
-q QUERY, --query QUERY
[pygetpapers] query string
-k HITS, --hits HITS [pygetpapers] number of papers to download
--project_name PROJECT_NAME
CProject directory name
-d DICTIONARY, --dictionary DICTIONARY
[file name/url] existing ami dictionary to annotate sentences or support supervised entity extraction
-o OUTPUT, --output OUTPUT
outputs csv with sentences/terms
--make_ami_dict MAKE_AMI_DICT
[Command] title for ami-dict. Makes ami-dict of all extracted entities; works only with spacy
--search_section [SEARCH_SECTION [SEARCH_SECTION ...]]
[NER/dictionary search] section(s) to annotate. Choose from: ALL, ACK, AFF, AUT, CON, DIS, ETH, FIG, INT, KEY, MET, RES, TAB, TIL. Defaults to
ALL
--entities [ENTITIES [ENTITIES ...]]
[NER] entities to extract. Default (ALL). Common entities SpaCy: GPE, LANGUAGE, ORG, PERSON (for additional ones check: ); SciSpaCy: CHEMICAL,
DISEASE
--spacy_model SPACY_MODEL
[NER] optional. Choose between spacy or scispacy models. Defaults to spacy
--html HTML outputs html with sentences/terms
--synonyms SYNONYMS annotate the corpus/sections with synonyms from ami-dict
--make_json MAKE_JSON
outputs json with sentences/terms
--search_html searches html documents (mainly IPCC)
--extract_abb EXTRACT_ABB
[Command] title for abb-ami-dict. Extracts abbreviations and expansions; makes ami-dict of all extracted entities
-l LOGLEVEL, --loglevel LOGLEVEL
provide logging level. Example --log warning <<info,warning,debug,error,critical>>, default='info'
-f LOGFILE, --logfile LOGFILE
saves log to specified file in output directory as well as printing to terminal
```
#### Download papers from [EPMC](https://europepmc.org/) via `pygetpapers`
COMMAND
```
docanalysis --run_pygetpapers -q "terpene" -k 10 --project_name terpene_10
```
LOGS
```
INFO: making project/searching terpene for 10 hits into C:\Users\shweata\docanalysis\terpene_10
INFO: Total Hits are 13935
1it [00:00, 936.44it/s]
INFO: Saving XML files to C:\Users\shweata\docanalysis\terpene_10\*\fulltext.xml
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:30<00:00, 3.10s/it]
```
CPROJ
```
C:\USERS\SHWEATA\DOCANALYSIS\TERPENE_10
│ eupmc_results.json
│
├───PMC8625850
│ eupmc_result.json
│ fulltext.xml
│
├───PMC8727598
│ eupmc_result.json
│ fulltext.xml
│
├───PMC8747377
│ eupmc_result.json
│ fulltext.xml
│
├───PMC8771452
│ eupmc_result.json
│ fulltext.xml
│
├───PMC8775117
│ eupmc_result.json
│ fulltext.xml
│
├───PMC8801761
│ eupmc_result.json
│ fulltext.xml
│
├───PMC8831285
│ eupmc_result.json
│ fulltext.xml
│
├───PMC8839294
│ eupmc_result.json
│ fulltext.xml
│
├───PMC8840323
│ eupmc_result.json
│ fulltext.xml
│
└───PMC8879232
eupmc_result.json
fulltext.xml
```
#### Section the papers
COMMAND
```
docanalysis --project_name terpene_10 --make_section
```
LOGS
```
WARNING: Making sections in /content/terpene_10/PMC9095633/fulltext.xml
INFO: dict_keys: dict_keys(['abstract', 'acknowledge', 'affiliation', 'author', 'conclusion', 'discussion', 'ethics', 'fig_caption', 'front', 'introduction', 'jrnl_title', 'keyword', 'method', 'octree', 'pdfimage', 'pub_date', 'publisher', 'reference', 'results_discuss', 'search_results', 'sections', 'svg', 'table', 'title'])
WARNING: loading templates.json
INFO: wrote XML sections for /content/terpene_10/PMC9095633/fulltext.xml /content/terpene_10/PMC9095633/sections
WARNING: Making sections in /content/terpene_10/PMC9120863/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9120863/fulltext.xml /content/terpene_10/PMC9120863/sections
WARNING: Making sections in /content/terpene_10/PMC8982386/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC8982386/fulltext.xml /content/terpene_10/PMC8982386/sections
WARNING: Making sections in /content/terpene_10/PMC9069239/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9069239/fulltext.xml /content/terpene_10/PMC9069239/sections
WARNING: Making sections in /content/terpene_10/PMC9165828/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9165828/fulltext.xml /content/terpene_10/PMC9165828/sections
WARNING: Making sections in /content/terpene_10/PMC9119530/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9119530/fulltext.xml /content/terpene_10/PMC9119530/sections
WARNING: Making sections in /content/terpene_10/PMC8982077/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC8982077/fulltext.xml /content/terpene_10/PMC8982077/sections
WARNING: Making sections in /content/terpene_10/PMC9067962/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9067962/fulltext.xml /content/terpene_10/PMC9067962/sections
WARNING: Making sections in /content/terpene_10/PMC9154778/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9154778/fulltext.xml /content/terpene_10/PMC9154778/sections
WARNING: Making sections in /content/terpene_10/PMC9164016/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9164016/fulltext.xml /content/terpene_10/PMC9164016/sections
47% 1056/2258 [00:01<00:01, 1003.31it/s]ERROR: cannot parse /content/terpene_10/PMC9165828/sections/1_front/1_article-meta/26_custom-meta-group/0_custom-meta/1_meta-value/0_xref.xml
67% 1516/2258 [00:01<00:00, 1047.68it/s]ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/7_xref.xml
ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/14_email.xml
ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/3_xref.xml
ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/6_xref.xml
ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/9_email.xml
ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/10_email.xml
ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/4_xref.xml
...
100% 2258/2258 [00:02<00:00, 949.43it/s]
```
CTREE
```
├───PMC8625850
│ └───sections
│ ├───0_processing-meta
│ ├───1_front
│ │ ├───0_journal-meta
│ │ └───1_article-meta
│ ├───2_body
│ │ ├───0_1._introduction
│ │ ├───1_2._materials_and_methods
│ │ │ ├───1_2.1._materials
│ │ │ ├───2_2.2._bacterial_strains
│ │ │ ├───3_2.3._preparation_and_character
│ │ │ ├───4_2.4._evaluation_of_the_effect_
│ │ │ ├───5_2.5._time-kill_studies
│ │ │ ├───6_2.6._propidium_iodide_uptake-e
│ │ │ └───7_2.7._hemolysis_test_from_human
│ │ ├───2_3._results
│ │ │ ├───1_3.1._encapsulation_of_terpene_
│ │ │ ├───2_3.2._both_terpene_alcohol-load
│ │ │ ├───3_3.3._farnesol_and_geraniol-loa
│ │ │ └───4_3.4._farnesol_and_geraniol-loa
│ │ ├───3_4._discussion
│ │ ├───4_5._conclusions
│ │ └───5_6._patents
│ ├───3_back
│ │ ├───0_ack
│ │ ├───1_fn-group
│ │ │ └───0_fn
│ │ ├───2_app-group
│ │ │ └───0_app
│ │ │ └───2_supplementary-material
│ │ │ └───0_media
│ │ └───9_ref-list
│ └───4_floats-group
│ ├───4_table-wrap
│ ├───5_table-wrap
│ ├───6_table-wrap
│ │ └───4_table-wrap-foot
│ │ └───0_fn
│ ├───7_table-wrap
│ └───8_table-wrap
...
```
##### Search sections using dictionary
COMMAND
```
docanalysis --project_name terpene_10 --output entities.csv --make_ami_dict entities.xml
```
LOGS
```
INFO: Found 7134 sentences in the section(s).
INFO: getting terms from /content/activity.xml
100% 7134/7134 [00:02<00:00, 3172.14it/s]
/usr/local/lib/python3.7/dist-packages/docanalysis/entity_extraction.py:352: FutureWarning: The default value of regex will change from True to False in a future version. In addition, single character regular expressions will *not* be treated as literal strings when regex=True.
"[", "").str.replace("]", "")
INFO: wrote output to /content/terpene_10/activity.csv
```
#### Extract entities
We use `spacy` to extract Named Entites. Here's the list of Entities it supports:CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW,LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART
INPUT
```
docanalysis --project_name terpene_10 --make_section --spacy_model spacy --entities ORG --output org.csv
```
LOGS
```
INFO: Found 7134 sentences in the section(s).
INFO: Loading spacy
100% 7134/7134 [01:08<00:00, 104.16it/s]
/usr/local/lib/python3.7/dist-packages/docanalysis/entity_extraction.py:352: FutureWarning: The default value of regex will change from True to False in a future version. In addition, single character regular expressions will *not* be treated as literal strings when regex=True.
"[", "").str.replace("]", "")
INFO: wrote output to /content/terpene_10/org.csv
```
##### Extract information from specific section(s)
You can choose to extract entities from specific sections
COMMAND
```
docanalysis --project_name terpene_10 --make_section --spacy_model spacy --search_section AUT, AFF --entities ORG --output org_aut_aff.csv
```
LOG
```
INFO: Found 28 sentences in the section(s).
INFO: Loading spacy
100% 28/28 [00:00<00:00, 106.66it/s]
/usr/local/lib/python3.7/dist-packages/docanalysis/entity_extraction.py:352: FutureWarning: The default value of regex will change from True to False in a future version. In addition, single character regular expressions will *not* be treated as literal strings when regex=True.
"[", "").str.replace("]", "")
INFO: wrote output to /content/terpene_10/org_aut_aff.csv
```
#### Create dictionary of extracted entities
COMMAND
```
docanalysis --project_name terpene_10 --make_section --spacy_model spacy --search_section AUT, AFF --entities ORG --output org_aut_aff.csvv --make_ami_dict org
```
LOG
```
INFO: Found 28 sentences in the section(s).
INFO: Loading spacy
100% 28/28 [00:00<00:00, 96.56it/s]
/usr/local/lib/python3.7/dist-packages/docanalysis/entity_extraction.py:352: FutureWarning: The default value of regex will change from True to False in a future version. In addition, single character regular expressions will *not* be treated as literal strings when regex=True.
"[", "").str.replace("]", "")
INFO: wrote output to /content/terpene_10/org_aut_aff.csvv
INFO: Wrote all the entities extracted to ami dict
```
Snippet of the dictionary
```
<?xml version="1.0"?>
- dictionary title="/content/terpene_10/org.xml">
<entry count="2" term="Department of Biochemistry"/>
<entry count="2" term="Chinese Academy of Agricultural Sciences"/>
<entry count="2" term="Tianjin University"/>
<entry count="2" term="Desert Research Center"/>
<entry count="2" term="Chinese Academy of Sciences"/>
<entry count="2" term="University of Colorado Boulder"/>
<entry count="2" term="Department of Neurology"/>
<entry count="1" term="Max Planck Institute for Chemical Ecology"/>
<entry count="1" term="College of Forest Resources and Environmental Science"/>
<entry count="1" term="Michigan Technological University"/>
```
### Extract Abbreviations
```
docanalysis --project_name corpus\ethics_10 --output dict_search_5.csv --make_json dict_search_5.json --make_ami_dict entities --extract_abb ethics_abb
```
`--extract_abb` extracts all abbreviations and make an ami-dictionary of abbreviations and its expansion.
EXAMPLE DICTIONARY:
```
<dictionary title="ethics_abb">
<entry name="ASD" term="Atrial septal defect"/>
<entry name="SPSS" term="Statistical Package for Social Sciences"/>
<entry name="ACGME" term="Accreditation Council of Graduate Medical Education"/>
<entry name="ABP" term="American Board of Paediatrics"/>
<entry name="TBL" term="Team Based Learning"/>
<entry name="TBL" term="Team-Based Learning"/>
<entry name="UNTH" term="University of Nigeria Teaching Hospital"/>
<entry name="PAH" term="pulmonary hypertension"/>
<entry name="HREC" term="Human Sciences Research Council, Research Ethics Committee"/>
<entry name="HREC" term="Human Sciences Research Council, Research Ethics Committee"/>
<entry name="CDC" term="Center for Disease Control and Prevention"/>
<entry name="ASD" term="Atrial septal defect"/>
<entry name="PAH" term="pulmonary arterial hypertension"/>
<entry name="CVDs" term="cardiovascular diseases"/>
<entry name="BNs" term="Bayesian networks"/>
<entry name="GI" term="gastrointestinal cancer"/>
<entry name="ART" term="antiretroviral therapy"/>
<entry name="HIV" term="human immunodeficiency virus"/>
<entry name="GATE" term="Global Cooperation on Assistive Technology"/>
</dictionary>
```
### Search HTML
If you working with HTML files (IPCC Reports, for example) and not XMLs in CProjects, you can use `--search_html` flag.
```
docanalysis --project_name corpus\ipcc_sectioned --extract_abb ethics_abb --search_html
```
Make sure that your `html` sections is in `sections` folder. Here's an example structure:
```
C:.
| dict_search_2.csv
| dict_search_2.json
|
\---chap4
| chapter_4
|
\---sections
4.1.html
4.2.1.html
4.2.2.html
4.2.3.html
4.2.4.html
4.2.5.html
4.2.7.html
4.2.html
4.3.1.html
4.3.2.html
4.3.html
4.4.1.html
4.4.2.html
4.4.html
4.5.html
executive_summary.html
frequently_asked_questions.html
table_of_contents.html
```
If you haven't sectioned your `html`, please use `py4ami` to section it.
#### What is a dictionary
Dictionary, in `ami`'s terminology, a set of terms/phrases in XML format.
Dictionaries related to ethics and acknowledgments are available in [Ethics Dictionary](https://github.com/petermr/docanalysis/tree/main/ethics_dictionary) folder
If you'd like to create a custom dictionary, you can find the steps, [here](https://github.com/petermr/tigr2ess/blob/master/dictionaries/TUTORIAL.md)
```
### Python tools used
- [`pygetpapers`](https://github.com/petermr/pygetpapers) - scrape open repositories to download papers of interest
- [nltk](https://www.nltk.org/) - splits sentences
- [spaCy](https://spacy.io/) and [SciSpaCy](https://allenai.github.io/scispacy/)
- recognize Named-Entities and label them
- Here's the list of NER labels [SpaCy's English model](https://spacy.io/models/en) provides:
`CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART`
### Set up `venv`
We recommend you create a virtual environment (`venv`) before installing `docanalysis` and activate the `venv` every time you run `docanalysis`.
#### Windows
Creating a `venv`
```
>> mkdir docanalysis_demo
>> cd docanalysis_demo
>> python -m venv venv
```
Activating `venv`
```
>> venv\Scripts\activate.bat
```
#### MacOS
Creating a `venv`
```
>> mkdir docanalysis_demo
>> cd docanalysis_demo
>> python3 -m venv venv
```
Activating `venv`
```
>> venv\Scripts\activate.bat
```
Refer the [official documentation](https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/) for more help.
### Credits:
- [Ayush Garg](https://github.com/ayush4921)
- [Shweata N. Hegde](https://github.com/ShweataNHegde/)
- [Daniel Mietchen](https://github.com/Daniel-Mietchen)
- [Peter Murray-Rust](https://github.com/petermr)