معرفی شرکت ها


dnnet-0.9.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Deep Neural Network.
ویژگی مقدار
سیستم عامل -
نام فایل dnnet-0.9.1
نام dnnet
نسخه کتابخانه 0.9.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Daichi Yoshikawa
ایمیل نویسنده daichi.yoshikawa@gmail.com
آدرس صفحه اصلی https://github.com/daichi-yoshikawa/dnnet
آدرس اینترنتی https://pypi.org/project/dnnet/
مجوز BSD-3-Clause
dnnet ===== Implementation of Deep Neural Network with numpy. **Now dnnet can run with GPU through cupy.** dnnet provides high-level API to define and run neural network model. User can turn on/off GPU layer-wise, that is, you can compute convolution layer with GPU, activation layer with CPU, and dropout layer with CPU, for example. # Table of Contents * Brief tour of dnnet; Introduce small examples, supported methodologies * Installation * Example; Run sample scripts * Use in your project # Brief tour of dnnet ## Quick glance of usage User can creates instance of NeuralNetwork, add layer one by one,<br> finalize model, set optimizer, execute model fitting, and save model. In the below, some arguments are not specified to simplify the example. ``` from dnnet.neuralnet import NeuralNetwork from dnnet.training.optimizer import AdaGrad from dnnet.training.weight_initialization import DefaultInitialization, He from dnnet.training.loss_function import MultinomialCrossEntropy from dnnet.layers.activation import Activation, ActivationLayer from dnnet.layers.affine import AffineLayer from dnnet.layers.batch_norm import BatchNormLayer from dnnet.layers.convolution import ConvolutionLayer from dnnet.layers.dropout import DropoutLayer # Load x, y here model = NeuralNetwork(input_shape=(1, 28, 28), dtype=np.float32) model.add(ConvolutionLayer(filter_shape=(32, 3, 3)) model.add(BatchNormLayer()) model.add(ActivationLayer(activation=Activation.Type.relu)) model.add(DropoutLayer(drop_ratio=0.25)) model.add(AffineLayer(output_shape=10) model.add(ActivationLayer(activation=Activation.Type.softmax) model.compile() optimizer = AdaGrad(learning_rate=1e-3, weight_decay=1e-3) learning_curve = model.fit( x=x, y=y, epochs=5, batch=size=100, optimizer=optimizer, loss_function=MultinomialCrossEntropy()) model.save(path='./data/output', name='my_cnn.dat') ``` User can also load model, and predict output. ``` model.load(path='./data/output', name='my_cnn.dat') y = model.predict(x) ``` GPU is easily enabled. Do the follows at the top of your script. ``` from dnnet.config import Config Config.enable_gpu() ``` If GPU is enabled but you'd like to turn it off for some specific layers, you can use force_cpu flag. Here, ConvolutionLayer and AffineLayer don't have the flag. ``` from dnnet.config import Config Config.enable_gpu() # Do something here. # AffineLayer uses GPU. model.add(AffineLayer(output=512, weight_initialization=He())) # BatchNormLayer uses CPU regardless of Config.enable_gpu(). model.add(BatchNormLayer(force_cpu=True)) ``` ## Supported Methods ### Layers * Affine * Convolution * Activation * Pool * Batch Normalization * Dropout ### Activation Functions * Sigmoid * ReLU * ELU * Tanh * Softmax ### Optimization Methods * SGD * Momentum * AdaGrad * Adam * AdaDelta * RMSProp ### Weight Initialization Methods * Xavier's method * He's method * Default ### Loss Functions * MultinomialCrossEntropy for multinomial classification. * BinomialCrossEntropy for binary classification. * SquaredError for regression. # Installation ## Requisites * python 3.4 or later * numpy 1.12.0 or later * matplotlib If you'd like to use GPU, you need to install the follows additionally. * CUDA (eg. CUDA 10.0) * CuDNN (eg. CuDNN7.6.5) * cupy (eg. cupy-cuda100==7.0.0) ## Install dnnet by pip. ``` pip install dnnet ``` ## Install dnnet from source. dnnet doesn't require any complicated path-settings.<br> You just download scripts from github, place it wherever you like,<br> and you add some lines like below in your scripts. ``` import sys sys.path.append('<path-to-dnnet-root-dir>') from dnnet.neuralnet import NeuralNetwork ``` ## Setup environment from scratch (Optional) In this section, setting up python environment from scratch is described.<br> "From scratch" means that you're supposed to use brand-new computer,<br> no python packages (even python itself!) and relevant libraries are installed. It may also be useful when you start new python project. In this case,<br> you will partially execute the following steps. ### Setup Python Virtual Environment #### Assumption * Use python3 * Make directory for pyenv in "/home/<user-name>/Documents" * Root directory of your python virtual env is in "/home/<user-name>/Work/py352_ws" * "/home/<user-name>/Work/py352_ws/" is your working directory #### Setup procedure * Install required packages ``` $ sudo apt-get install git gcc make openssl libssl-dev libbz2-dev libreadline-dev libsqlite3-dev ``` * Install tkinter(This is required to use matplotlib in virtualenv) ``` $ sudo apt-get install python3-tk python-tk tk-dev ``` * Install pyenv ``` $ cd ~ $ git clone git://github.com/yyuu/pyenv.git ./pyenv $ mkdir -p ./pyenv/versions ./pyenv/shims ``` * Set paths Add the following description in ~/.bashrc ``` export PYENV_ROOT=${HOME}/Documents/pyenv if [ -d "${PYENV_ROOT}" ]; then export PATH=${PYENV_ROOT}/bin:$PATH eval "$(pyenv init -)" fi ``` And then execute the follows. ``` $ exec $SHELL -l $ . ~/.bashrc ``` * Install pyenv-virtualenv ``` $ cd $PYENV_ROOT/plugins $ git clone git://github.com/yyuu/pyenv-virtualenv.git ``` * Install python 3.5.2 ``` $ pyenv install 3.5.2 ``` * Setup local pyenv ``` $ mkdir -p ~/Work/py352_ws $ pyenv virtualenv 3.5.2 <name of this environment> ``` <name of this environment> can be like py352_env, python3_env, or anything you like.<br> Here, it's assumed that you named the environment as "py352_env". ``` $ cd ~/Work/py352_ws $ pyenv local py352_env $ pip install --upgrade pip ``` # Example ## MNIST * Run neural network for mnist. ``` cd <path-to-dnnet>/examples/mnist python mnist.py ``` If you get an error "ImportError: Python is not installed as a framework.", it might be because of matplotlib issue.(This happened to me when working with MacOS.) In the case, please try the follow. ``` cd ~/.matplotlib echo "backend: TkAgg" >> matplotlibrc ``` # Usage in your project ## If you pip installed dnnet ``` from dnnet.neuralnet import NeuralNetwork ``` ## If you git cloned dnnet ``` import sys sys.path.append('<path-to-dnnet-root-dir>') from dnnet.neuralnet import NeuralNetwork ``` For example, if dnnet directory is in ~/Work/dnnet, do like below. ``` import os import sys sys.path.append(os.path.join(os.getenv('HOME'), 'Work/dnnet')) from dnnet.neuralnet import NeuralNetwork ```


نیازمندی

مقدار نام
>=1.12.0 numpy


زبان مورد نیاز

مقدار نام
>=3.4 Python


نحوه نصب


نصب پکیج whl dnnet-0.9.1:

    pip install dnnet-0.9.1.whl


نصب پکیج tar.gz dnnet-0.9.1:

    pip install dnnet-0.9.1.tar.gz