معرفی شرکت ها


dmsa-0.5.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

SQLAlchemy models and DDL and ERD generation from chop-dbhi/data-models style JSON endpoints.
ویژگی مقدار
سیستم عامل -
نام فایل dmsa-0.5.8
نام dmsa
نسخه کتابخانه 0.5.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده The Children's Hospital of Philadelphia
ایمیل نویسنده cbmisupport@email.chop.edu
آدرس صفحه اصلی https://github.com/chop-dbhi/data-models-sqlalchemy
آدرس اینترنتی https://pypi.org/project/dmsa/
مجوز Other/Proprietary
# Data Models SQLAlchemy [![Circle CI](https://circleci.com/gh/chop-dbhi/data-models-sqlalchemy/tree/master.svg?style=svg)](https://circleci.com/gh/chop-dbhi/data-models-sqlalchemy/tree/master) [![Coverage Status](https://coveralls.io/repos/chop-dbhi/data-models-sqlalchemy/badge.svg?branch=master&service=github)](https://coveralls.io/github/chop-dbhi/data-models-sqlalchemy?branch=master) SQLAlchemy models and DDL and ERD generation for [chop-dbhi/data-models-service](https://github.com/chop-dbhi/data-models-service) style JSON endpoints. Web service available at http://dmsa.a0b.io/ ## SQLAlchemy Models In your shell, hopefully within a virtualenv: ```sh pip install dmsa ``` In python: ```python from sqlalchemy import MetaData from dmsa import make_model_from_service metadata = MetaData() metadata = make_model_from_service('omop', '5.0.0', 'http://data-models.origins.link/', metadata) for tbl in metadata.sorted_tables: print tbl.name ``` These models are dynamically generated at runtime from JSON endpoints provided by chop-dbhi/data-models-service, which reads data stored in chop-dbhi/data-models. Any data model stored there can be converted into SQLAlchemy models. At the time of writing, the following are available. CAVEAT: The models are currently "Classical"-style and therefore un-mapped. See more information [here](https://github.com/chop-dbhi/data-models-sqlalchemy/issues/22). - i2b2 - 1.7.0 - i2b2 for PEDSnet - 2.0.1 - OMOP - 4.0.0 - 5.0.0 - PCORnet - 1.0.0 - 2.0.0 - 3.0.0 - PEDSnet - 1.0.0 - 2.0.0 - 2.1.0 - 2.2.0 ## DDL and ERD Generation Use of the included Dockerfile is highly recommended to avoid installing DBMS and graphing specific system requirements. The following DBMS dialects are supported when generating DDL: - PostgreSQL - MySQL - MS SQL Server - Oracle ### With Docker: Retrieve the image: ```sh docker pull dbhi/data-models-sqlalchemy ``` Usage Message: ```sh docker run --rm dbhi/data-models-sqlalchemy dmsa -h ``` Generate OMOP V5 creation DDL for Oracle: ```sh docker run --rm dbhi/data-models-sqlalchemy dmsa ddl -tci omop 5.0.0 oracle ``` Generate OMOP V5 drop DDL for Oracle: ```sh docker run --rm dbhi/data-models-sqlalchemy dmsa ddl -tci --drop omop 5.0.0 oracle ``` Generate OMOP V5 data deletion DML for Oracle: ```sh docker run --rm dbhi/data-models-sqlalchemy dmsa ddl --delete-data omop 5.0.0 oracle ``` Generate i2b2 PEDSnet V2 ERD (the image will land at `./erd/i2b2_pedsnet_2.0.0_erd.png`): ```sh docker run --rm -v $(pwd)/erd:/erd dbhi/data-models-sqlalchemy dmsa erd -o /erd/i2b2_pedsnet_2.0.0_erd.png i2b2_pedsnet 2.0.0 ``` The `graphviz` graphing package supports a number of other output formats, which are interpreted from the passed extension. ### Without Docker: Install the system requirements (see Dockerfile for details): - Python 2.7 - `graphviz` for ERD generation - Oracle `instantclient-basic` and `-sdk` and `libaio1` for Oracle DDL generation - `libpq-dev` for PostgreSQL DDL generation - `unixodbc-dev` for MS SQL Server DDL generation Install the python requirements, hopefully within a virtualenv (see Dockerfile for details): ```sh pip install cx-Oracle # for Oracle DDL generation pip install psycopg2 # for PostgreSQL DDL generation pip install PyMySQL # for MySQL DDL generation pip install pyodbc # for MS SQL Server DDL generation ``` Install the data-models-sqlalchemy python package: ```sh pip install dmsa ``` Usage Message: ```sh dmsa -h ``` Generate OMOP V5 creation DDL for Oracle: ```sh dmsa ddl -tci omop 5.0.0 oracle ``` Generate OMOP V5 drop DDL for Oracle: ```sh dmsa ddl -tci --drop omop 5.0.0 oracle ``` Generate OMOP V5 data deletion DML for Oracle: ```sh dmsa ddl --delete-data omop 5.0.0 oracle ``` Generate i2b2 PEDSnet V2 ERD (the image will land at `./erd/i2b2_pedsnet_2.0.0_erd.png`): ```sh mkdir -p erd dmsa erd -o ./erd/i2b2_pedsnet_2.0.0_erd.png i2b2_pedsnet 2.0.0 ``` ## Web Service The web service uses a [Gunicorn](http://gunicorn.org/) server in the Docker container and the Flask debug server locally. It exposes the following endpoints: - Creation DDL at `/<model>/<version>/ddl/<dialect>/` - Creation DDL for only `table`, `constraint`, or `index` elements at `/<model>/<version>/ddl/<dialect>/<elements>` - Drop DDL at `/<model>/<version>/drop/<dialect>/` - Drop DDL for only `table`, `constraint`, or `index` elements at `/<model>/<version>/drop/<dialect>/<elements>` - Data deletion DML at `/<model>/<version>/delete/<dialect>/` - ERDs at `/<model>/<version>/erd/` - Oracle logging scripts at `/<model>/<version>/logging/oracle/` - Oracle logging scripts for only `table` or `index` elements at `/<model>/<version>/logging/oracle/<elements>/` - Oracle nologging scripts at `/<model>/<version>/nologging/oracle/` - Oracle nologging scripts for only `table` or `index` elements at `/<model>/<version>/logging/oracle/<elements>/` ### With Docker: Usage: ```sh docker run dbhi/data-models-sqlalchemy gunicorn -h ``` Run: ```sh docker run dbhi/data-models-sqlalchemy # Uses Dockerfile defaults of 0.0.0.0:80 ``` ### Without Docker: Install Flask: ```sh pip install Flask ``` Usage Message: ```sh dmsa -h ``` Run: ```sh dmsa serve # Uses Flask defaults of 127.0.0.1:5000 ```


نیازمندی

مقدار نام
==0.0.28 ERAlchemy
==0.10.1 Flask
==1.0.5 SQLAlchemy
==0.6.2 docopt
==2.7.0 requests


نحوه نصب


نصب پکیج whl dmsa-0.5.8:

    pip install dmsa-0.5.8.whl


نصب پکیج tar.gz dmsa-0.5.8:

    pip install dmsa-0.5.8.tar.gz