معرفی شرکت ها


dm-gym-0.1.6b0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DM-Gym: A set of environments for developing reinforcement learning agents for Data Mining problems.
ویژگی مقدار
سیستم عامل -
نام فایل dm-gym-0.1.6b0
نام dm-gym
نسخه کتابخانه 0.1.6b0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ashwin M Devanga
ایمیل نویسنده devanga.a@northeastern.edu
آدرس صفحه اصلی https://github.com/ashwin-M-D/DM-Gym
آدرس اینترنتی https://pypi.org/project/dm-gym/
مجوز BSD 3-Clause
# DM-Gym Data Mining Gym Environment for Reinforcement Learning ### Installation You can download the git repository directly and keep the dm_gym folder inside your project folder. You could also use the following steps to install DM-Gym in your system to be accessible anywhere: ```bash git clone https://github.com/ashwin-M-D/DM-Gym.git cd DM-Gym pip install -e ``` The package is also in the pypi repository so it can be installed using pip. ```bash pip install dm-gym ``` ### Testing To test the environment using the test codes provided, you need to have ray installed. Please use the conda environment file provided to setup your environment. Then, install DM-Gym as mentioned above and proceed with running the python notebooks provided. All of this can be done as follows. ```bash ## Installing DM-Gym git clone https://github.com/ashwin-M-D/DM-Gym.git cd DM-Gym pip install -e ## Creating the conda environment cd testing cd conda_envs conda env create -f dmgym_environment.yml ## Activate conda environment and cd to the folder containing the experiment files. conda activate myenv_dmgym_testing cd .. cd experiments ``` ### Available Environments 1. Clustering: All these environments involve records which arrive in a random order and they are classified into one of k clusters. The value of k is predefined similar to k-means clustering. Basically the input / state space is a single record from the dataset and the output is a discreet variable which is an integer between 0 and k-1, each specifying a specific cluster. - clustering-v0: Reward function is negative of log(db-index) ![Reward Function for Clustering-v0](./images/clustering_v0.png) This is a poor performing environment. - clustering-v1: Reward function is based on both the distance and also the db-index. ![Reward Function for Clustering-v1](./images/clustering_v1.png) This performs better than clustering-v0. However, it is suggested to use one of the other 2 clustering environments. - clustering-v2: Uses a different reward system which is either p-1 or p at each step. Based on the paper "A Reinforcement Learning Approach to Online Clustering" [1]. Please use a low gamma value with this environment for optimal results. - clustering-v3: This has the best performance among all the clustering environments. It converts the problem into a classification problem internally. However, to showcase true capabilities of RL, this should not be used. Use a low gamma value with this environment. 2. Classification: Classification is done by reading a single record at a time and checking the output of your RL agent against the class it belongs to. * classification-v0: This has very good performance and the reward function is defined as 1 if the output of the agent and the class it actually belongs to match and -1 if they don't match. It is again recommended to use a low gamma value for this environment. ### Environments planned for the future 2. Linear Regression environments. 2. More Classification environments. #### Notes: 1. **See Testing folder to see examples of each of the environments and their outputs** 2. **Documentation for all available functions is available in the documentation folder. This folder will be updated regularly to make sure there are no ambiguity in the usage of the environments** ### References 1. Likas, A., 1999. A reinforcement learning approach to online clustering. _Neural computation_, _11_(8), pp.1915-1932. <a href="http://62.217.125.140/jspui/bitstream/123456789/11133/1/Likas-1999-A%20reinforcement%20learning%20approach%20to%20online%20clustering.pdf">PDF</a> 2. Hubbs, C.D., Perez, H.D., Sarwar, O., Sahinidis, N.V., Grossmann, I.E. and Wassick, J.M., 2020. OR-Gym: A Reinforcement Learning Library for Operations Research Problems. _arXiv preprint arXiv:2008.06319_. <a href="https://arxiv.org/pdf/2008.06319">PDF</a> <a href="https://github.com/hubbs5/or-gym">GitHub</a>


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl dm-gym-0.1.6b0:

    pip install dm-gym-0.1.6b0.whl


نصب پکیج tar.gz dm-gym-0.1.6b0:

    pip install dm-gym-0.1.6b0.tar.gz