معرفی شرکت ها


dlc2nwb-0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DeepLabCut <-> NWB conversion utilities
ویژگی مقدار
سیستم عامل -
نام فایل dlc2nwb-0.3
نام dlc2nwb
نسخه کتابخانه 0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده A. & M. Mathis Labs
ایمیل نویسنده alexander@deeplabcut.org
آدرس صفحه اصلی https://github.com/DeepLabCut/DLC2NWB
آدرس اینترنتی https://pypi.org/project/dlc2nwb/
مجوز -
# Welcome to the DeepLabCut 2 Neurodata Without Borders Repo Here we provide utilities to convert [DeepLabCut (DLC)](https://github.com/DeepLabCut/DeepLabCut) output to/from [Neurodata Without Borders (NWB) format](https://www.nwb.org/nwb-neurophysiology/). This repository also elaborates a way for how pose estimation data should be represented in NWB. Specifically, this package allows you to convert DLC's predictions on videos (*.h5 files) into NWB format. This is best explained with an example (see below). # NWB pose ontology The standard is presented [here](https://github.com/rly/ndx-pose). Our code is based on this NWB extension (PoseEstimationSeries, PoseEstimation) that was developed with [Ben Dichter, Ryan Ly and Oliver Ruebel](https://www.nwb.org/team/). # Installation: Simply do (it only depends on `ndx-pose` and `deeplabcut`): `pip install dlc2nwb` # Example within DeepLabCut DeepLabCut's h5 data files can be readily converted to NWB format either via the GUI from the `Analyze Videos` tab or programmatically, as follows: ```python import deeplabcut deeplabcut.analyze_videos_converth5_to_nwb(config_path, video_folder) ``` Note that DLC does not strictly depend on dlc2nwb just yet; if attempting to convert to NWB, a user would be asked to run `pip install dlc2nwb`. # Example use case of this package (directly): Here is an example for converting DLC data to NWB format (and back). Notice you can also export your data directly from DeepLabCut. ``` from dlc2nwb.utils import convert_h5_to_nwb, convert_nwb_to_h5 # Convert DLC -> NWB: nwbfile = convert_h5_to_nwb( 'examples/config.yaml', 'examples/m3v1mp4DLC_resnet50_openfieldAug20shuffle1_30000.h5', ) # Convert NWB -> DLC df = convert_nwb_to_h5(nwbfile[0]) ``` Example data to run the code is provided in the folder [examples](/examples). The data is based on a DLC project you can find on [Zenodo](https://zenodo.org/record/4008504#.YWhD7NOA4-R) and that was originally presented in [Mathis et al., Nat. Neuro](https://www.nature.com/articles/s41593-018-0209-y) as well as [Mathis et al., Neuron](https://www.sciencedirect.com/science/article/pii/S0896627320307170?via%3Dihub). To limit space, the folder only contains the project file `config.yaml` and DLC predictions for an example video called `m3v1mp4.mp4`, which are stored in `*.h5` format. The video is available, [here](https://github.com/DeepLabCut/DeepLabCut/tree/master/examples/openfield-Pranav-2018-10-30/videos). # Funding and contributions: We gratefully acknowledge the generous support from the [Kavli Foundation](https://kavlifoundation.org/) via a [Kavli Neurodata Without Borders Seed Grants ](https://www.nwb.org/nwb-seed-grants/). We also acknowledge feedback, and our collaboration with [Ben Dichter, Ryan Ly and Oliver Ruebel](https://www.nwb.org/team/).


نیازمندی

مقدار نام
>=0.1.1 ndx-pose
- pytest
>=2.2.0.2 deeplabcut


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl dlc2nwb-0.3:

    pip install dlc2nwb-0.3.whl


نصب پکیج tar.gz dlc2nwb-0.3:

    pip install dlc2nwb-0.3.tar.gz