معرفی شرکت ها


dlc2action-0.2b2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

tba
ویژگی مقدار
سیستم عامل -
نام فایل dlc2action-0.2b2
نام dlc2action
نسخه کتابخانه 0.2b2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده A. Mathis Lab
ایمیل نویسنده alexander@deeplabcut.org
آدرس صفحه اصلی https://github.com/amathislab/DLC2Action
آدرس اینترنتی https://pypi.org/project/dlc2action/
مجوز -
[![Generic badge](https://img.shields.io/badge/Contributions-Welcome-brightgreen.svg)](CONTRIBUTING.md) <a href="https://github.com/psf/black"><img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-000000.svg"></a> ![](logos/title.png) DLC2Action is an action segmentation package that makes running and tracking of machine learning experiments easy. ## Installation ### Via the Python Package Index You can simply install DLC2Action by typing: ``` pip install "dlc2action==0.2b2" ``` ### From Github You can install DLC2Action for development by running this in your terminal. ``` git clone https://github.com/AlexEMG/DLC2Action cd DLC2Action conda create --name DLC2Action python=3.9 conda activate DLC2Action python -m pip install . ``` ## Features The functionality of DLC2Action includes: - compiling and updating project-specific configuration files, - filling in configuration dictionaries automatically whenever possible, - saving training parameters and results, - running predictions and hyperparameter searches, - creating active learning files, - loading hyperparameter search results in experiments and dumping them into configuration files, - comparing new experiment parameters with the project history and loading pre-computed features (to save time) and previously created splits (to enforce consistency) when there is a match, - filtering and displaying training, prediction and hyperparameter search history, - plotting training curve comparisons and more. ## A quick example You can start a new project, run an experiment, visualize it and use the trained model to make a prediction in a few lines of code. ```python from dlc2action.project import Project # create a new project project = Project('project_name', data_type='data_type', annotation_type='annotation_type', data_path='path/to/data/folder', annotation_path='path/to/annotation/folder') # set important parameters, like the set labels you want to predict project.update_parameters(...) # run a training episode project.run_episode('episode_1') # plot the results project.plot_episodes(['episode_1'], metrics=['recall']) # use the model trained in episode_1 to make a prediction for new data project.run_prediction('prediction_1', episode_names=['episode_1'], data_path='path/to/new_data/folder') ``` ## How to get more information? Check out the [examples](/examples) or [read the documentation](https://alexemg.github.io/DLC2action/html_docs/dlc2action.html) for a taste of what else you can do. ## Acknowledgments [Liza Kozlova](https://github.com/elkoz) from the [A. Mathis Group at EPFL](https://www.mathislab.org/) is the main developer of DLC2Action. We are grateful to many people for feedback, alpha-testing and suggestions, in particular to Andy Bonnetto, Lucas Stoffl, Margaret Lane, Marouane Jaakik, Steffen Schneider and Mackenzie Mathis. ## License: Note that the software is provided "as is", without warranty of any kind, express or implied. If you use the code or data, please cite us! ## Reference: Stay tuned for our first publication -- Any feedback on this beta release is welcome at this time. Thanks for using DLC2Action.


نیازمندی

مقدار نام
>=4.62.3 tqdm
>=1.9 torch
>=1.21.2 numpy
>=1.7.1 scipy
==1.4.3 pandas
>=3.4.3 matplotlib
>=0.5.3 editdistance
>=2.10.0 optuna
>=3.0.9 openpyxl
>=5.1.0 plotly
==0.16.12 ruamel.yaml
<=1.2 p-tqdm
>=8.0.3 click
>=7.1.2 pytest
>=3.7.0 tables
>=0.13.1 torchvision
>=6.1.1 ftfy
>=2022.8.17 regex
>=1.1.2 scikit-learn
- jupyter


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl dlc2action-0.2b2:

    pip install dlc2action-0.2b2.whl


نصب پکیج tar.gz dlc2action-0.2b2:

    pip install dlc2action-0.2b2.tar.gz