معرفی شرکت ها


django-simple-chatbot-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A very basic Django Chatbot ft. NLTK and DRF
ویژگی مقدار
سیستم عامل -
نام فایل django-simple-chatbot-0.0.9
نام django-simple-chatbot
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Janga
ایمیل نویسنده jangascodingplace@gmail.com
آدرس صفحه اصلی https://github.com/Codingplace42/django-simple-chatbot
آدرس اینترنتی https://pypi.org/project/django-simple-chatbot/
مجوز MIT License
# Django Simple Chatbot It's a very basic Chatbot for Python Django including NLTK and Django-REST-framework. This Chatbot is currently working without Machine learning algorithms. Decisions are made by simple statistic evaluation. The Algorithm is based on labeled data on your Django Database and the tool is supporting continuous labeling. ## Requirements - Python (3.7, 3.8, 3.9) - Django (2.2, 3.0, 3.1, 3.2) ## Dependencies - [Django REST-Framework - Awesome web-browsable Web APIs.](https://www.django-rest-framework.org) - [NLTK - the Natural Language Toolkit](https://www.nltk.org) ## Installation Install using `pip` ... ``` pip install django-simple-chatbot ``` add `simple_chatbot` to your `INSTALLED_APPS` setting. ``` INSTALLED_APPS = [ ..., 'simple_chatbot' ] ``` **Note:** Make sure to run `manage.py migrate` after changing your settings. The simple_chatbot app provides Django database migrations. ## Quickstart Create a `response.py` file inside of an already installed app. ``` from simple_chatbot.responses import GenericRandomResponse class GreetingResponse(GenericRandomResponse): choices = ("Hey, how can I help you?", "Hey friend. How are you? How can I help you?") class GoodbyeResponse(GenericRandomResponse): choices = ("See you later.", "Thanks for visiting.", "See ya! Have a nice day.") ``` Add this Response to your `SIMPLE_CHATBOT` setting ``` SIMPLE_CHATBOT = { ... 'responses': ( ("YOUR_APP.responses.GreetingResponse", "Greeting"), ("YOUR_APP.responses.GoodbyeResponse", "Goodbye"), ), } ``` Go to your Django admin and create `greeting` and `goodbye` tags. Your response options will be selectable via choices. Go to your Django admin, write some patterns and label them. You can just use the following labels: ``` [Greeting] "Hi, how are you?", "Is anyone there?", "Hello", "What's up?!", "hey there!" ["Goodbye"] "Bye", "See you later", "Goodbye", "I need to go now." ``` **Note** If you do not want to write that patterns by yourself, use a command `manage.py simple_chatbot_initial`. You need to label them after initializing. The package will automatically tokenize the input and map tokens to labels. Add simple_chatbot url to your routings: ``` from simple_chatbot.views import SimpleChatbot urlpatterns = [ ... path("simple_chatbot/", SimpleChatbot.as_view()) ] ``` Make a Post request to your new endpoint: ``` curl \ -H "Content-Type: application/json" \ --data '{"message":"how r u?"}' \ http://localhost:8000/simple_chatbot/ ``` The response should look like ``` { "tag": "Greeting", "message": "Hey, how can I help you?" } ``` ## Raw Documentation ### Database Models - `Pattern` - message which might be send by a user. Add a tag to the pattern for being able to identify and response to that message - `Tag` - includes information about Response class for a specific method - `Token` - tokenized words which are referencing to different patterns. The user-input will be identified by different tokens. - `UserMessageInput` - new inputs from production. It contains information about chosen pattern. You can label that messages later and include them into the system. ### settings options You can add following options to your `SIMPLE_CHATBOT` setting: - STEMMER_MODULE: nltk package for stumming your strings - default: `nltk.stem.lancaster.LancasterStemmer`. - responses: choices for your tags. It should reference to a response class. **Warning** You won't be able to create tags without response classes. ### Response Classes The `simple_chatbot.responses` package provides currently following response classes: - BaseResponse - GenericRandomResponse #### BaseResponse It's just an abstract class for require a specific shape of your response classes. If you are creating a new response, you should inheritance from that class. #### GenericRandomResponse It will choose a generic answer from class property `choices`. ### Views This `simple_chatbot.responses` includes a single view `SimpleChatbot`. This view is reusable. The most important changeble option: - `save_pattern`: if True each message will be saved and you can post label the incoming messages. default `True`. #### SimpleChatbot API Documentation - Required Request type: `POST` - payload: `{message: "YOUR MESSAGE"}` - response: `{tag: 'TAG', message: 'RESPONSE'}` ## About It's a very basic Chatbot decisions are made with tools by NLTK which follows basic preprocessing for NLP of tokenization and stumming. This package is inspired by the Chatbot Tutorial of Tech witch Tim. Checkout his blog: https://www.techwithtim.net/tutorials/ai-chatbot/ In my opinion the used script is teaching important concepts but it's overtooled by using Deep-Learning algorithm on that small amount of data. Real NLP's and Deep Learning algorithms needs a large amount of data. One problem in smaller and beginning projects: You won't have that amount of data by starting your projects. **This package gives you possibilities to work with a small amount of data and it helps you to collect new data for being able to use deep learning algorithms one day.** ### Contributing Fork the repo and get stuck in!


نیازمندی

مقدار نام
>=2.2 django
- nltk
- djangorestframework


نحوه نصب


نصب پکیج whl django-simple-chatbot-0.0.9:

    pip install django-simple-chatbot-0.0.9.whl


نصب پکیج tar.gz django-simple-chatbot-0.0.9:

    pip install django-simple-chatbot-0.0.9.tar.gz