معرفی شرکت ها


django-pandas-0.6.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Tools for working with pydata.pandas in your Django projects
ویژگی مقدار
سیستم عامل -
نام فایل django-pandas-0.6.6
نام django-pandas
نسخه کتابخانه 0.6.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Christopher Clarke
ایمیل نویسنده cclarke@chrisdev.com
آدرس صفحه اصلی https://github.com/chrisdev/django-pandas/
آدرس اینترنتی https://pypi.org/project/django-pandas/
مجوز -
============== Django Pandas ============== .. image:: https://github.com/chrisdev/django-pandas/actions/workflows/test.yml/badge.svg :target: https://github.com/chrisdev/django-pandas/actions/workflows/test.yml .. image:: https://coveralls.io/repos/chrisdev/django-pandas/badge.png?branch=master :target: https://coveralls.io/r/chrisdev/django-pandas Tools for working with `pandas <http://pandas.pydata.org>`_ in your Django projects Contributors ============ * `Christopher Clarke <https://github.com/chrisdev>`_ * `Bertrand Bordage <https://github.com/BertrandBordage>`_ * `Guillaume Thomas <https://github.com/gtnx>`_ * `Parbhat Puri <https://parbhatpuri.com/>`_ * `Fredrik Burman (coachHIPPO) <https://www.coachhippo.com>`_ * `Safe Hammad <http://safehammad.com>`_ * `Jeff Sternber <https://www.linkedin.com/in/jeffsternberg>`_ * `@MiddleFork <https://github.com/MiddleFork>`_ * `Daniel Andrlik <https://github.com/andrlik>`_ * `Kevin Abbot <https://github.com/kgabbott>`_ * `Yousuf Jawwad <https://github.com/ysfjwd>`_ * `@henhuy <https://github.com/henhuy>`_ * `Hélio Meira Lins <https://github.com/meiralins>`_ * `@utpyngo <https://github.com/utpyngo>`_ * `Anthony Monthe <https://github.com/ZuluPro>`_ * `Vincent Toupet <https://github.com/vtoupet>`_ * `Anton Ian Sipos <https://github.com/aisipos>`_ * `Thomas Grainger <https://github.com/graingert/>`_ What's New =========== Version 0.6.5 added support for Pandas >= 1.3 and fixes a number of other issues. Dependencies ============= ``django-pandas`` supports `Django`_ (>=1.4.5) or later and requires `django-model-utils`_ (>= 1.4.0) and `Pandas`_ (>= 0.12.0). **Note** because of problems with the ``requires`` directive of setuptools you probably need to install ``numpy`` in your virtualenv before you install this package or if you want to run the test suite :: pip install numpy pip install -e .[test] python runtests.py Some ``pandas`` functionality requires parts of the Scipy stack. You may wish to consult http://www.scipy.org/install.html for more information on installing the ``Scipy`` stack. You need to install your preferred version of Django. as that Django 2 does not support Python 2. .. _Django: http://djangoproject.com/ .. _django-model-utils: http://pypi.python.org/pypi/django-model-utils .. _Pandas: http://pandas.pydata.org Contributing ============ Please file bugs and send pull requests to the `GitHub repository`_ and `issue tracker`_. .. _GitHub repository: https://github.com/chrisdev/django-pandas/ .. _issue tracker: https://github.com/chrisdev/django-pandas/issues Installation ============= Start by creating a new ``virtualenv`` for your project :: mkvirtualenv myproject Next install ``numpy`` and ``pandas`` and optionally ``scipy`` :: pip install numpy pip install pandas You may want to consult the `scipy documentation`_ for more information on installing the ``Scipy`` stack. .. _scipy documentation: http://www.scipy.org/install.html Finally, install ``django-pandas`` using ``pip``:: pip install django-pandas or install the development version from ``github`` :: pip install https://github.com/chrisdev/django-pandas/tarball/master Usage ====== IO Module ---------- The ``django-pandas.io`` module provides some convenience methods to facilitate the creation of DataFrames from Django QuerySets. read_frame ^^^^^^^^^^^ **Parameters** - qs: A Django QuerySet. - fieldnames: A list of model field names to use in creating the ``DataFrame``. You can span a relationship in the usual Django way by using double underscores to specify a related field in another model - index_col: Use specify the field name to use for the ``DataFrame`` index. If the index field is not in the field list it will be appended - coerce_float : Boolean, defaults to True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. - verbose: If this is ``True`` then populate the DataFrame with the human readable versions of any foreign key or choice fields else use the actual values set in the model. - column_names: If not None, use to override the column names in the DateFrame Examples ^^^^^^^^^ Assume that this is your model:: class MyModel(models.Model): full_name = models.CharField(max_length=25) age = models.IntegerField() department = models.CharField(max_length=3) wage = models.FloatField() First create a query set:: from django_pandas.io import read_frame qs = MyModel.objects.all() To create a dataframe using all the fields in the underlying model :: df = read_frame(qs) The `df` will contain human readable column values for foreign key and choice fields. The `DataFrame` will include all the fields in the underlying model including the primary key. To create a DataFrame using specified field names:: df = read_frame(qs, fieldnames=['age', 'wage', 'full_name']) To set ``full_name`` as the ``DataFrame`` index :: qs.to_dataframe(['age', 'wage'], index_col='full_name']) You can use filters and excludes :: qs.filter(age__gt=20, department='IT').to_dataframe(index_col='full_name') DataFrameManager ----------------- ``django-pandas`` provides a custom manager to use with models that you want to render as Pandas Dataframes. The ``DataFrameManager`` manager provides the ``to_dataframe`` method that returns your models queryset as a Pandas DataFrame. To use the DataFrameManager, first override the default manager (`objects`) in your model's definition as shown in the example below :: #models.py from django_pandas.managers import DataFrameManager class MyModel(models.Model): full_name = models.CharField(max_length=25) age = models.IntegerField() department = models.CharField(max_length=3) wage = models.FloatField() objects = DataFrameManager() This will give you access to the following QuerySet methods: - ``to_dataframe`` - ``to_timeseries`` - ``to_pivot_table`` to_dataframe ^^^^^^^^^^^^^ Returns a DataFrame from the QuerySet **Parameters** - fieldnames: The model field names to utilise in creating the frame. to span a relationship, use the field name of related fields across models, separated by double underscores, - index: specify the field to use for the index. If the index field is not in the field list it will be appended - coerce_float: Attempt to convert the numeric non-string data like object, decimal etc. to float if possible - verbose: If this is ``True`` then populate the DataFrame with the human readable versions of any foreign key or choice fields else use the actual value set in the model. Examples ^^^^^^^^^ Create a dataframe using all the fields in your model as follows :: qs = MyModel.objects.all() df = qs.to_dataframe() This will include your primary key. To create a DataFrame using specified field names:: df = qs.to_dataframe(fieldnames=['age', 'department', 'wage']) To set ``full_name`` as the index :: qs.to_dataframe(['age', 'department', 'wage'], index='full_name']) You can use filters and excludes :: qs.filter(age__gt=20, department='IT').to_dataframe(index='full_name') to_timeseries -------------- A convenience method for creating a time series i.e the DataFrame index is instance of a DateTime or PeriodIndex **Parameters** - fieldnames: The model field names to utilise in creating the frame. to span a relationship, just use the field name of related fields across models, separated by double underscores, - index: specify the field to use for the index. If the index field is not in the field list it will be appended. This is mandatory. - storage: Specify if the queryset uses the `wide` or `long` format for data. - pivot_columns: Required once the you specify `long` format storage. This could either be a list or string identifying the field name or combination of field. If the pivot_column is a single column then the unique values in this column become a new columns in the DataFrame If the pivot column is a list the values in these columns are concatenated (using the '-' as a separator) and these values are used for the new timeseries columns - values: Also required if you utilize the `long` storage the values column name is use for populating new frame values - freq: the offset string or object representing a target conversion - rs_kwargs: Arguments based on pandas.DataFrame.resample - verbose: If this is ``True`` then populate the DataFrame with the human readable versions of any foreign key or choice fields else use the actual value set in the model. Examples ^^^^^^^^^ Using a *long* storage format :: #models.py class LongTimeSeries(models.Model): date_ix = models.DateTimeField() series_name = models.CharField(max_length=100) value = models.FloatField() objects = DataFrameManager() Some sample data::: ======== ===== ===== date_ix series_name value ======== ===== ====== 2010-01-01 gdp 204699 2010-01-01 inflation 2.0 2010-01-01 wages 100.7 2010-02-01 gdp 204704 2010-02-01 inflation 2.4 2010-03-01 wages 100.4 2010-02-01 gdp 205966 2010-02-01 inflation 2.5 2010-03-01 wages 100.5 ========== ========== ====== Create a QuerySet :: qs = LongTimeSeries.objects.filter(date_ix__year__gte=2010) Create a timeseries dataframe :: df = qs.to_timeseries(index='date_ix', pivot_columns='series_name', values='value', storage='long') df.head() date_ix gdp inflation wages 2010-01-01 204966 2.0 100.7 2010-02-01 204704 2.4 100.4 2010-03-01 205966 2.5 100.5 Using a *wide* storage format :: class WideTimeSeries(models.Model): date_ix = models.DateTimeField() col1 = models.FloatField() col2 = models.FloatField() col3 = models.FloatField() col4 = models.FloatField() objects = DataFrameManager() qs = WideTimeSeries.objects.all() rs_kwargs = {'how': 'sum', 'kind': 'period'} df = qs.to_timeseries(index='date_ix', pivot_columns='series_name', values='value', storage='long', freq='M', rs_kwargs=rs_kwargs) to_pivot_table -------------- A convenience method for creating a pivot table from a QuerySet **Parameters** - fieldnames: The model field names to utilise in creating the frame. to span a relationship, just use the field name of related fields across models, separated by double underscores, - values : column to aggregate, optional - rows : list of column names or arrays to group on Keys to group on the x-axis of the pivot table - cols : list of column names or arrays to group on Keys to group on the y-axis of the pivot table - aggfunc : function, default numpy.mean, or list of functions If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) - fill_value : scalar, default None Value to replace missing values with - margins : boolean, default False Add all row / columns (e.g. for subtotal / grand totals) - dropna : boolean, default True **Example** :: # models.py class PivotData(models.Model): row_col_a = models.CharField(max_length=15) row_col_b = models.CharField(max_length=15) row_col_c = models.CharField(max_length=15) value_col_d = models.FloatField() value_col_e = models.FloatField() value_col_f = models.FloatField() objects = DataFrameManager() Usage :: rows = ['row_col_a', 'row_col_b'] cols = ['row_col_c'] pt = qs.to_pivot_table(values='value_col_d', rows=rows, cols=cols) .. end-here CHANGES ======== 0.6.6 (2012-10-27) ------------------ The main feature of this is release in the use of a GHA to automate the publishing of the package to PYPI as per PR `#146`_ (again much thanks @graingert). Several other minor issues have also been addressed. .. _`#146`: https://github.com/chrisdev/django-pandas/pull/146 0.6.5 (2021-10-15) ------------------ This version added support for Pandas >=1.3 (thanks to @graingert) Other Changes: * Migrated from Travis to Github Actions for CI (also @graingert) * Avoid the use of deprecated methods `#139`_ and `#142`_ (again much thanks @graingert) * Fix for issue `#135`_ (Thanks @Yonimdo) * Silence Django 3.2 errors on testing on etc. `#133`_ thanks @whyscream. .. _`#139`: https://github.com/chrisdev/django-pandas/issues/135 .. _`#142`: https://github.com/chrisdev/django-pandas/issues/142 .. _`#135`: https://github.com/chrisdev/django-pandas/issues/135 .. _`#133`: https://github.com/chrisdev/django-pandas/issues/133 0.6.4 (2021-02-08) ------------------ Bumped version number as the previous release was incorrectly uploaded to pypi 0.6.1 (2020-05-26) ------------------ Supports the latest release of Pandas 1.0.3 0.6.0 (2019-01-11) ------------------ Removes compatibility with Django versions < 1.8 0.5.2 (2019-01-3) ----------------- **This is the last version that supports Django < 1.8** - Improved coerce_float option (thanks @ZuluPro ) - Ensure compatibility with legacy versions of Django ( < 1.8) - Test pass with Django 2+ and python 3.7 0.5.1 (2018-01-26) ------------------- - Address Unicode decode error when installing with pip3 on docker (Thanks @utapyngo) 0.5.0 (2018-01-20) ------------------ - Django 2.0 compatibility (Thanks @meirains) 0.4.5 (2017-10-4) ----------------- - A Fix for fieldname deduplication bug thanks to @kgabbott 0.4.4 (2017-07-16) ------------------- - The `verbose` argument now handles more use cases (Thanks to @henhuy and Kevin Abbott) - Corece float argument add to ```to_timeseries()``` method (Thanks Yousuf Jawwad) 0.4.3 (2017-06-02) -------------------- - Fix doc typos and formatting - Prevent column duplication in read_frame (Thanks Kevin Abbott) 0.4.2 (2017-05-22) -------------------- - Compatibility with `pandas 0.20.1` - Support for Python 2.7 and 3.5 with Django versions 1.8+ - Suport for Python 3.6 and Django 1.11 - We still support legacy versions (Python 2.7 and Django 1.4) 0.4.1 (2016-02-05) ------------------- - Address the incompatibility with Django 1.9 due to the removal of specialized query sets like the `ValuesQuerySet <https://code.djangoproject.com/ticket/24211>`_ - Address the removal of the ``PassThrougManager`` from ``django-model-utils`` version ``2.4``. We've removed the dependency on django-model-utils and included the PassThroughManger (which was always a standalone tool distributed a part of django-model-utils) for compatibility with earlier versions of Django (<= 1.8). For more recent versions of Django we're using Django's built in ``QuerySet.as_manager()``. - Now supports Pandas 0.14.1 and above - The fall in Coverage in this release largely reflects the integration of the PassThroughManager into the code base. We'll add the required test coverage for the PassThroughManager in subsequent releases. 0.3.1 (2015-10-25) ------------------- - Extends the ability to span a ForeignKey relationship with double underscores to OneToOneField too thanks to Safe Hammad - Provide better support for ManyToMany and OneToMany relations thanks to Jeff Sternberg and @MiddleFork 0.3.0 (2015-06-16) --------------------- - This version supports Django 1.8 - Support for Pandas 0.16 0.2.2 (2015-03-02) --------------------- - Added Support for Django 1.7 0.2.1 (2015-01-28) --------------------- - Added Support for Values QuerySets - Support for Python 2.6 - Note we still have limited support for Django 1.7 but this will be coming in the next release 0.2.0 (2014-06-15) -------------------- - Added the ``io`` module so that DataFrames can be created from any queryset so you don't need to to add a ``DataFrame manager`` to your models. This is good for working with legacy projects. - added a Boolean ``verbose`` argument to all methods (which defaults to ``True``) This populate the DataFrame columns with the human readable versions of foreign key or choice fields. - Improved the performance DataFrame creation by removing dependency on ``np.core.records.fromrecords`` - Loads of bug fixes, more tests and improved coverage and better documentation


نیازمندی

مقدار نام
>=0.14.1 pandas
>=1.15.0 six
>=0.20.1 pandas
==5.4 coverage
==2.10.1 semver


نحوه نصب


نصب پکیج whl django-pandas-0.6.6:

    pip install django-pandas-0.6.6.whl


نصب پکیج tar.gz django-pandas-0.6.6:

    pip install django-pandas-0.6.6.tar.gz