معرفی شرکت ها


django-large-image-0.9.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Dynamic tile server in Django built on top of large-image (and GDAL)
ویژگی مقدار
سیستم عامل -
نام فایل django-large-image-0.9.0
نام django-large-image
نسخه کتابخانه 0.9.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Kitware, Inc.
ایمیل نویسنده kitware@kitware.com
آدرس صفحه اصلی https://github.com/girder/django-large-image
آدرس اینترنتی https://pypi.org/project/django-large-image/
مجوز Apache 2.0
# 🩻 🗺️ django-large-image <p align="center"> <a href="https://www.kitware.com/" target="_blank"> <img src="https://img.shields.io/badge/Made%20by-Kitware-blue" alt="Made by Kitware"> </a> <a href="https://pypi.org/project/django-large-image/" target="_blank"> <img src="https://img.shields.io/pypi/v/django-large-image.svg?logo=python&logoColor=white" alt="PyPI"> </a> <a href="https://anaconda.org/conda-forge/django-large-image" target="_blank"> <img src="https://img.shields.io/conda/vn/conda-forge/django-large-image.svg?logo=conda-forge&logoColor=white" alt="conda-forge"> </a> <a href="https://codecov.io/gh/girder/django-large-image" target="_blank"> <img src="https://codecov.io/gh/girder/django-large-image/branch/main/graph/badge.svg?token=VBK1F6JWNY" alt="codecov"> </a> <a href="https://github.com/girder/django-large-image/actions/workflows/ci.yml" target="_blank"> <img src="https://github.com/girder/django-large-image/actions/workflows/ci.yml/badge.svg" alt="Tests"> </a> </p> `django-large-image` is an abstraction of [`large-image`](https://github.com/girder/large_image) for use with `django-rest-framework` providing viewset mixins for endpoints to work with large images (Cloud Optimized GeoTiffs or medical image formats) in Django. The dynamic tile server provided here prevents the need for preprocessing large images into tile sets for viewing interactively on slippy-maps. Under the hood, large-image applies operations (rescaling, reprojection, image encoding) to create image tiles on-the-fly. | Lightning Talk for 2022 Cloud-Native Geospatial Outreach Event | |-| | [![outreach event video](https://raw.githubusercontent.com/girder/django-large-image/main/doc/outreach_video.png)](https://youtu.be/v3e2ODCK9Co?t=31247) | | [View slides here](https://docs.google.com/presentation/d/1T_bmtxx1qR8GgzXdFer3LwDi_dxp6X4RqndbsSVhWTg/edit?usp=sharing) | ## Table of Contents - [Overview](#-overview) - [Support](#-support) - [Features](#-features) - [Installation](#%EF%B8%8F-installation) - [Usage](#-usage) - [Example Code](#-example-code) - [Customization](#%EF%B8%8F-customization) - [Non-Detail ViewSets](#-non-detail-viewsets) - [Styling](#-styling) - [Converting Images to Pyramidal Tiffs (COGs)](#%EF%B8%8F-converting-images-to-pyramidal-tiffs-cogs) - [Using with django-raster](#using-with-django-raster) - [Demo App](#demo-app) *** ## ℹ️ Overview This package brings Kitware's [large-image](https://github.com/girder/large_image) to Django by providing a set of abstract, mixin API viewset classes that will handle tile serving, fetching metadata from images, and extracting regions of interest. `django-large-image` is an installable Django app with a few classes that can be mixed into a Django project (or application)'s drf-based viewsets to provide tile serving endpoints out of the box. Notably, `django-large-image` is designed to work specifically with `FileField` interfaces with development being tailored to Kitware's [`S3FileField`](https://github.com/girder/django-s3-file-field). GeoDjango's [`GDALRaster`](https://docs.djangoproject.com/en/4.0/ref/contrib/gis/gdal/#django.contrib.gis.gdal.GDALRaster) can also be used by returning `GDALRaster.name` in the `get_path()` override. This package ships with pre-made HTML templates for rendering geospatial image tiles with CesiumJS and non-geospatial image tiles with [GeoJS](https://github.com/OpenGeoscience/geojs). <p align="center"> <img src="https://raw.githubusercontent.com/girder/django-large-image/main/doc/admin.png"/> <p align="center">Dynamic tile server in Django built on top of large-image (and GDAL)</p> </p> ### 🤝 Support [![Kitware](https://img.shields.io/badge/Made%20by-Kitware-blue)](https://www.kitware.com/) `django-large-image` and the supporting [`large-image`](https://github.com/girder/large_image) library are developed and maintained by the Data & Analytics group at [Kitware, Inc.](https://www.kitware.com/) We work with large image data in both the geospatial and medical capacities. If you have questions about these technologies, or you would like to discuss your own geospatial and medical image problems and learn how we can help, please reach out at kitware@kitware.com. We look forward to the conversation! ### 🌟 Features Rich set of RESTful endpoints to extract information from large image formats: - Image metadata (`/info/metadata`, `/info/metadata_internal`) - Tile serving (`/tiles/{z}/{x}/{y}.png?projection=EPSG:3857`) - Region extraction (`/data/region.tif?left=v&right=v&top=v&bottom=v`) - Image thumbnails (`/data/thumbnail.png`) - Individual pixels (`/data/pixel?left=v&top=v`) - Band histograms (`/data/histogram`) Support for any storage backend: - Supports Django's `FileField` - Supports [`S3FileField`](https://github.com/girder/django-s3-file-field) - Customizable method for handling data access (`get_path` override) - Supports GDAL's [Virtual File System](https://gdal.org/user/virtual_file_systems.html) for `s3://`, `ftp://`, etc. URLs Miscellaneous: - Admin interface widget for viewing image tiles. - Caching - image tiles and thumbnails are cached to prevent recreating these data on multiple requests - utilizes the [Django cache framework](https://docs.djangoproject.com/en/4.0/topics/cache/). Specify a named cache to use with the `LARGE_IMAGE_CACHE_NAME` setting. - Easily extensible SSR templates for tile viewing with CesiumJS and GeoJS - OpenAPI specification | OpenAPI Documentation | Tiles Endpoint | |---|---| |![swagger-spec](https://raw.githubusercontent.com/girder/django-large-image/main/doc/swagger.png) | ![tiles-spec](https://raw.githubusercontent.com/girder/django-large-image/main/doc/tiles_endpoint.png)| ## ⬇️ Installation Out of the box, `django-large-image` only depends on the core `large-image` module, but you will need a `large-image-source-*` module in order for this to work. Most of our users probably want to work with geospatial images so we will focus on the `large-image-source-gdal` case, but it is worth noting that `large-image` has source modules for a wide variety of image formats (e.g., medical image formats for microscopy). See [`large-image`](https://github.com/girder/large_image#installation)'s installation instructions for more details. ### 🎡 pip **Tip:* installing GDAL is notoriously difficult, so at Kitware we provide pre-built Python wheels with the GDAL binary bundled for easily installation in production **linux** environments. To install our GDAL wheel, use: `pip install --find-links https://girder.github.io/large_image_wheels GDAL`* ```bash pip install \ --find-links https://girder.github.io/large_image_wheels \ django-large-image \ 'large-image[gdal,pil]>=1.16.2' ``` ### 🐍 Conda Or install with `conda`: ```bash conda install -c conda-forge django-large-image large-image-source-gdal ``` ## 🚀 Usage Simply install the app and mixin one of the mixing classes to your existing `django-rest-framework` viewset. ```py # settings.py INSTALLED_APPS = [ ..., 'django_large_image', ] ``` The following are the provided mixin classes and their use case: - `LargeImageMixin`: for use with a standard, non-detail `ViewSet`. Users must implement `get_path()` - `LargeImageDetailMixin`: for use with a detail viewset like `GenericViewSet`. Users must implement `get_path()` - `LargeImageFileDetailMixin`: (most commonly used) for use with a detail viewset like `GenericViewSet` where the associated model has a `FileField` storing the image data. - `LargeImageVSIFileDetailMixin`: (geospatial) for use with a detail viewset like `GenericViewSet` where the associated model has a `FileField` storing the image data that is intended to be read with GDAL. This will access the data over GDAL's Virtual File System interface (a VSI path). Most users will want to use `LargeImageFileDetailMixin` and so the following example demonstrate how to use it: Specify the `FILE_FIELD_NAME` as the string name of the `FileField` in which your image data are saved on the associated model. ```py # viewsets.py from rest_framework import viewsets from django_large_image.rest import LargeImageFileDetailMixin class MyModelViewSet(viewsets.GenericViewSet, LargeImageFileDetailMixin): ... # configuration for your model's viewset FILE_FIELD_NAME = 'field_name' ``` ```py # urls.py from django.urls import include, path from rest_framework.routers import SimpleRouter from myapp.viewsets import MyModelViewSet router = SimpleRouter(trailing_slash=False) router.register(r'api/my-model', MyModelViewSet) urlpatterns = [ # Additional, standalone URLs from django-large-image path('', include('django_large_image.urls')), ] + router.urls ``` And that's it! ### 📝 Example Code To use the mixin classes provided here, add `django_large_image` to the `INSTALLED_APPS` of your Django project, then create a model, serializer, and viewset in your Django project like so: ```py # models.py from django.db import models from rest_framework import serializers class ImageFile(models.Model): name = models.TextField() file = models.FileField() class ImageFileSerializer(serializers.ModelSerializer): class Meta: model = ImageFile fields = '__all__' ``` ```py # admin.py from django.contrib import admin from example.core.models import ImageFile @admin.register(ImageFile) class ImageFileAdmin(admin.ModelAdmin): list_display = ('pk', 'name') ``` Then create the viewset, mixing in the `django-large-image` viewset class: ```py # viewsets.py from example.core import models from rest_framework import mixins, viewsets from django_large_image.rest import LargeImageFileDetailMixin class ImageFileDetailViewSet( mixins.ListModelMixin, viewsets.GenericViewSet, LargeImageFileDetailMixin, ): queryset = models.ImageFile.objects.all() serializer_class = models.ImageFileSerializer # for `django-large-image`: the name of the image FileField on your model FILE_FIELD_NAME = 'file' ``` Then register the URLs: ```py # urls.py from django.urls import include, path from example.core.viewsets import ImageFileDetailViewSet from rest_framework.routers import SimpleRouter router = SimpleRouter(trailing_slash=False) router.register(r'api/image-file', ImageFileDetailViewSet) urlpatterns = [ # Additional, standalone URLs from django-large-image path('', include('django_large_image.urls')), ] + router.urls ``` (Optional) You can also use an admin widget for your model: ```html <!-- templates/admin/myapp/imagefile/change_form.html --> {% extends "admin/change_form.html" %} {% block after_field_sets %} <script> var baseEndpoint = 'api/image-file'; </script> {% include 'admin/django_large_image/_include/geojs.html' %} {% endblock %} ``` Please note the example Django project in the `project/` directory of this repository that shows how to use `django-large-image` in a [`girder-4`](https://github.com/girder/cookiecutter-girder-4) project. ### 🛠️ Customization The mixin classes are modularly designed and able to be subclassed for your project's needs. While the provided `LargeImageFileDetailMixin` handles `FileField`-interfaces, you can easily extend its base class, `LargeImageDetailMixin`, to handle any mechanism of data storage in your detail-oriented viewset. In the following example, we demonstrate how to use GDAL compatible VSI paths from a model that stores `s3://` or `https://` URLs. ```py # models.py from django.db import models from rest_framework import serializers class URLImageFile(models.Model): name = models.TextField() url = models.TextField() class URLImageFileSerializer(serializers.ModelSerializer): class Meta: model = URLImageFile fields = '__all__' ``` ```py # admin.py from django.contrib import admin from example.core.models import URLImageFile @admin.register(URLImageFile) class URLImageFileAdmin(admin.ModelAdmin): list_display = ('pk', 'name') ``` ```py # viewsets.py from example.core import models from rest_framework import mixins, viewsets from django_large_image.rest import LargeImageDetailMixin from django_large_image.utilities import make_vsi class URLLargeImageMixin(LargeImageDetailMixin): def get_path(self, request, pk=None): object = self.get_object() return make_vsi(object.url) class URLImageFileDetailViewSet( mixins.ListModelMixin, viewsets.GenericViewSet, URLLargeImageMixin, ): queryset = models.URLImageFile.objects.all() serializer_class = models.URLImageFileSerializer ``` Here is a good test image: https://oin-hotosm.s3.amazonaws.com/59c66c5223c8440011d7b1e4/0/7ad397c0-bba2-4f98-a08a-931ec3a6e943.tif #### 🥸 Non-Detail ViewSets The `LargeImageMixin` provides a mixin interface for non-detail viewsets (no associated model or primary key required). This can be particularly useful if your viewset has custom logic to retrieve the desired data. For example, you may want a viewset that gets the data path as a URL embedded in the request's query parameters. To do this, you can make a standard ViewSet with the `LargeImageMixin` like so: ```py # viewsets.py from rest_framework import viewsets from rest_framework.exceptions import ValidationError from django_large_image.rest import LargeImageMixin from django_large_image.utilities import make_vsi class URLLargeImageViewSet(viewsets.ViewSet, LargeImageMixin): def get_path(self, request, pk=None): try: url = request.query_params.get('url') except KeyError: raise ValidationError('url must be defined as a query parameter.') return make_vsi(url) ``` ## 🪄 Styling `django-large-image`'s dynamic tile serving supports band styling and making composite images from multiple frames and/or bands of your images. This means that you can easily create a false color image from multispectral imagery. `django-large-image` has two styling modes: 1. A simple interface to colormap a single channel using multiple query parameters. These are the documented OpenAPI query parameters. View a single band with a Matplotlib colormap: ```js var thumbnailUrl = `http://localhost:8000/api/image-file/${imageId}/data/thumbnail.png?band=3&palette=viridis&min=50&max=250`; ``` 2. A complex specification for styling across frames and bands to create composite images using a [JSON specification defined by `large-image`](https://girder.github.io/large_image/tilesource_options.html#style). Create a false color image from multiple bands in the source image: ```js // See https://girder.github.io/large_image/tilesource_options.html#style var style = { bands: [ {band: 5, palette: ['#000', '#f00']}, // red {band: 3, palette: ['#000', '#0f0']}, // green {band: 2, palette: ['#000', '#00f']} // blue ] }; var styleEncoded = encodeURIComponent(JSON.stringify(style)) var thumbnailUrl = `http://localhost:8000/api/image-file/${imageId}/data/thumbnail.png?style=${styleEncoded}`; ``` ## ☁️ Converting Images to Pyramidal Tiffs (COGs) Install [`large_image_converter`](https://pypi.org/project/large-image-converter/) and run the following: ```py import large_image_converter large_image_converter.convert(input_path, output_path) ``` It's that easy! The default parameters for that function will convert geospatial rasters to Cloud Optimized GeoTiffs (COGs) and non-geospatial images to a pyramidal tiff format. It's quite common to have a celery task that converts an image from a model in your application. Here is a starting point: ```py import os from example.core import models from celery import shared_task import large_image_converter @shared_task def task_convert_cog(my_model_pk): image_file = models.ImageFile.objects.get(pk=my_model_pk) input_path = image_file.file.name # TODO: get full path to file on disk with tempfile.TemporaryDirectory() as tmpdir: output_path = os.path.join(tmpdir, 'converted.tiff') large_image_converter.convert(input_path, output_path) # Do something with converted tiff file at `output_path` ... ``` ## Using with django-raster [`django-raster`](https://github.com/geodesign/django-raster) is a popular choice for storing geospatial raster data in Django. `django-large-image` works well with `django-raster` to provide additional endpoints for dynamic tile serving and more. Please take a look at the demo project here: https://github.com/ResonantGeoData/django-raster-demo and raise any questions about usage with `django-raster` there. ## Demo App There is a vanilla Django project in the `demo/` directory and this app is published as a standalone Docker image that anyone can try out: ```bash docker run -it -p 8000:8000 -v dli_demo_data:/opt/django-project/data ghcr.io/girder/django-large-image-demo:latest ```


نیازمندی

مقدار نام
- django
- djangorestframework
- drf-spectacular
- filelock
>=1.16.2 large-image
- matplotlib
- cmocean


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl django-large-image-0.9.0:

    pip install django-large-image-0.9.0.whl


نصب پکیج tar.gz django-large-image-0.9.0:

    pip install django-large-image-0.9.0.tar.gz