معرفی شرکت ها


django-graphene-framework-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Framework to streamline working with django and graphene
ویژگی مقدار
سیستم عامل -
نام فایل django-graphene-framework-0.0.2
نام django-graphene-framework
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Maciej Łyskawiński
ایمیل نویسنده lyskawinski.maciej@gmail.com
آدرس صفحه اصلی https://github.com/LonguCodes/DGF/
آدرس اینترنتی https://pypi.org/project/django-graphene-framework/
مجوز -
# Introduction DGF is a framework for streamlining the writting process using django and graphene. <h2> Disclaimer </h2> This package was initally created for personal project, so it may lack general features you need or have unnecesarry features that you don't need. If you find any of these feel free to leave a issue on [github](https://github.com/LonguCodes/DGF) # Instalation The package can be found on pypi 'pip install django-graphene-framework' # Dependencies This package requires you to install _graphene_ and _django_. If installing using pip the dependencies will be installed automatically `pip install graphene django` # Basics DGF allows you to give easy acces to your models through graphql. Let's assume we have a model `Profile` ```python # models.py from django.db.models import Model,CharField class Profile(Model): first_name = CharField(max_lenght=20) last_name = CharField(max_lenght=20) ``` We can easily transform it to graphql-accessable model by creating a schema ```python # schema.py from DGF import Schema from .models import Profile class ProfileSchema(Schema): class Meta: model = Profile ``` We specify the information in `Meta` class. The `model` field determines of which model is the schema of. After that we have to register the schema, so it can be transformed info graphene's schema We create a combiner and the register the schema ```python # schema.py from DGF import Schema, Combiner from .models import Profile class ProfileSchema(Schema): class Meta: model = Profile combiner = Combiner() combiner.register(ProfileSchema) schema = combiner.to_schema() ``` The `schema` can be used like any other graphene schema. **!!! DGF has not built-in endpoint for graphql as of now !!!** # Requests The schema will generate `query` for the model and `add`, `change` and `delete` mutations. **Filter parameters** are in form of `(lowercase) _<Name of the field>`. Relation fields are excluded. **Value parameteres** are in form of `(lowercase) <Name of the field>`. Autofields are excluded. Relations can be provided using ids. **Return values** are in form of `(lowercase) <Name of the field>`. ## Query The name of the query will the `<Name of your model>Query`. It returns chosen data about the adequate entries. ```graphql { ProfileQuery(_id: 1) { id first_name last_name } } # Will get information about every profile with id = 1 ``` ## Mutations The name of mutation will be `<Name of your Model>{Add,Change,Delete}` depending of the type of mutation you want to use. **Add** mutation can get `value parameters` for the new database entry. It returns chosed data about the added entry. ```graphql mutation { ProfileAdd(first_name: "Tom") { id first_name } } # Will add new profile with first_name = "Tom" and return it's id and first_name ``` **Change** mutation can get `value parameters` for the changed database entry as well as `filter paramters` for which entries to change. It returns chosen data about the changed entries. ``` mutation { ProfileChange(_first_name:"Tom", last_name:"Smith"){ first_name last_name } } # Will change last_name to "Smith" of every profile with name "Tom" and then return first_name and last_name of these profiles. ``` **Delete** mutation can get `filter paramteres` for which entries to delete. It returns ids of the deleted entries (will return chosen data in future versions). ``` mutation { ProfileDelete(_last_name:"Smith") } # Will delete every entry with last_name = "Smith" and return the ids of these entries. # Note the lack of {} ``` # Custom request handling You can specify which requests should be possible by overriding `allowed_requests`. ```python from DGF import Schema, QUERY, ADD from .models import Profile allowed_requests = [QUERY,ADD] class ProfileSchema(Schema): class Meta: model = Profile ``` You can specify which fields should be accessable by adding `fields` field in `Meta` class of the schema. ```python # schema.py from DGF import Schema from .models import Profile class ProfileSchema(Schema): class Meta: model = Profile fields = ['first_name','id'] ``` If `fields` is not defined, all fields will be added. You can also add your own fields to the schema. ```python # schema.py from graphene import Int from DGF import Schema, Field from .models import Profile class ProfileSchema(Schema): age = Field(name='age',field=Int()) # The name is required class Meta: model = Profile fields = ['first_name','id','age'] ``` If `fields` is not defined, all custom fields will be added. Custom fields will override fields from the model with the same name. ## Custom request logic Custom fields have to be handled by custom request logic. To add custom request logic you can override a method in the schema. The methods accepts parameters: - `schema` - to which schema this method refers - `model` - to which model this method refers - `data` - data from the previous link in the chain (for more information read [Pipeline](#Pipeline)) - `raw_data` - the raw, unprocessed request - `params` - additional data (like `schema`, `model`, `raw_data`,`type` and custom data added by the [Pipeline](#pipeline) modules) ### Fetch Fetch method get the data from the database. Name of the fetch method is in form of `fetch_{query,add,change,delete}`. Fetch should return the model / list of models. ### Execute Fetch fucntion execute the request on the provided data. Name of the execute method is in form of `execute_{query,add,change,delete}`. Execute should return the same type as the request's type (see [Query](#query) and [Mutations](#mutations)) # Pipeline DGF has built-in pipeline that let's you customize the behaviour on every step. The default pipeline is composed of: - `AuthLink` - tries to authenticate the user based on the provided credentials using authenticatos - `RequestPermissionLink` - checks if the user has permission to make this request - `FetchLink` - fetches the data from the database about the model - `ObjectPermissionLink` - filters the data based on the permission the user has - `ExecuteLink` - executes the request (applies only to `Change` and `Delete` mutations by default) First link in the pipeline get's the data from graphene, every other gets the data from previous one. You can change the pipeline by setting `DGF_PIPELINE` in the settings. ```python # settings.py DGF_PIPELINE=[ 'DGF.builtins.FetchPipeline', 'DGF.builtins.ExecutePipeline' ] # The bare minimum for everything to work out of the box ``` ### Auth Link Addes new param `user` that represents the authenticated user (uses the same model as django). The authentication is done using [Authenticators](#authenticators). If it's not possible to authenticate user, sets `user` to `AnonymousUser`. ### Request Permission Link Uses [Permissions](#permissions) to check if the user is suppose to use this request. If not, throws `Unauthorized`. ### Fetch Link Calls fetch method on the schema (see [Fetch](#fetch)). ### Object Permission Link Uses [Permissions](#permissions) to filter the data. ### Execute Link Calls execute method on the schema (see [Execute](#execute)) ## Custom link You can create your own link by overriding the `BaseLink` class and the `process` method inside. ```python # links.py from DGF import BaseLink class CustomLink(BaseLink): def process(self, data): # Your custom logic return data ``` You can get and set additional parameters by using `self.params` or `self.context`. # Auth ## Authenticators Authenticators allow you to authenticate the user without writting custom backend. Parameters for the authentication can be both in body or headers. By default [Model Authenticator](#model-authenticator) is used. ### Model Authenticator Model authenticator is used for authenticating the user using username and password. It uses Django's default backend. ### Backend Authenticator Base class for authenticator, that use existing backends. You need to define `args` field with names of all paramateres needed for authentication and it will call django's `authenticate` to try to authenticate the user ```python class ModelAuthenticator(BackendAuthenticator): args = ['username', 'password'] ``` ### Bearer Authenticator Base class for authenticator, that user the Bearer token. You need to override the `authenticate_token` method, which should return the user. ```python from django.conf import settings from jwt import decode from django.contrib.auth import get_user_model from DGF.builtins.authenticators import BearerAuthenticator class JWTAuthenticator(BearerAuthenticator): @classmethod def authenticate_token(cls, token): if not token: return None try: decoded = decode(token, settings.SECRET_KEY, algorithms=['HS256']) return get_user_model().objects.get(pk=decoded['sub']) except: return None ``` ### Custom Authenticator You can write custom authenticator by overriding `BaseAuthenticator` and `authenticate` method inside as well as `args` field. ```python # authenticators.py from django.contrib.auth import get_user_model import DGF.Authenticator class CustomAuthenticator(BaseAuthenticator): args = ['username'] @classmethod def authenticate(cls,username, **kwargs): try: return get_user_model().objects.get(username=username) except: return None ``` ## Permissions Permissions allow you to limit the user im terms of requests and particular entries. You can set permission for each schema by overriding the `permissions` field. ```python # schema.py from DGF import Schema from DGF.builtins import ReadOnlyPermission from .models import Profile class ProfileSchema(Schema): class Meta: model = Profile permissions = [ReadOnlyPermission] ``` ### Read Only Permission Allows only `Query` requests. ### Custom permissions You can write your own permissions by overriding `BasePermissions` class as well as overriding one or more of the methods: - `has_object_permission` - for [Object Permission Link](#object-permission-link) - `has_request_permission` - for [Request Permission Link](#request-permission-link) Both methods can accept `schema`, `model`, `data` and `params`. ```python # permission.py from DGF import BasePermission class IsAuthenticated(BasePermission): @staticmethod def has_request_permission(params, **kwargs): return params['user'].is_authenticated class IsOwner(BasePermission): @staticmethod def has_object_permission(schema, data, params, **kwargs): return getattr(data,'owner',None) == params['user'] ```


نیازمندی

مقدار نام
- django
- graphene


نحوه نصب


نصب پکیج whl django-graphene-framework-0.0.2:

    pip install django-graphene-framework-0.0.2.whl


نصب پکیج tar.gz django-graphene-framework-0.0.2:

    pip install django-graphene-framework-0.0.2.tar.gz