معرفی شرکت ها


django-elasticsearch-model-binder-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل -
نام فایل django-elasticsearch-model-binder-0.1.1
نام django-elasticsearch-model-binder
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Aidan Houlihan
ایمیل نویسنده aidandhoulihan@gmail.com
آدرس صفحه اصلی https://github.com/cr0mbly/django-elasticsearch-model-binder
آدرس اینترنتی https://pypi.org/project/django-elasticsearch-model-binder/
مجوز MIT License
================================= Django Elasticsearch Model Binder ================================= .. image:: https://travis-ci.com/cr0mbly/django-elasticsearch-model-builder.svg?token=WSHb2ssbuqzAyoqCvdCs&branch=master :target: https://travis-ci.com/cr0mbly/django-elasticsearch-model-builder .. image:: https://img.shields.io/pypi/v/django-elasticsearch-model-binder.svg :target: https://pypi.org/project/django-elasticsearch-model-binder .. image:: https://img.shields.io/pypi/l/django-elasticsearch-model-binder.svg :target: https://pypi.org/project/django-elasticsearch-model-binder Plugin for a Django/Elasticsearch paired environment that aligns CRUD operations within Django with the related indexes that are tied to the models that they build. **Setup** This intro assumes you have an installed version of both Django and Elasticsearch on your machine. The expected configuration for setup within django-elasticsearch-model-builder is within your settings for example: *setup.py* .. code-block:: python DJANGO_ES_MODEL_CONFIG = { 'hosts': [{'host': 'localhost', 'port': 9200}] } This example is fairly basic but follows the expected format for configuration of the Elasticsearch client built into this plugin so anything you place in this settings dictionary will be fed straight in, this helps with more complicated Elasticsearch setups with encryption and multiple clusters running off different hosts. IF your wanting the index to be automatically generated during first model generation you can add the following to your app to setup all of the indexes and alises so your model can start emitting cached fields to Elasticsearch from django.apps import AppConfig .. code-block:: python class TestAppConfig(AppConfig): name = 'tests.testapp' verbose_name = 'TestApp' def ready(self): from tests.test_app.models import Author from django_elasticsearch_model_binder.utils import ( initialize_es_model_index ) initialize_es_model_index(Author) **Tieing models to indexes.** Tieing a model to an elasticsearch index can be done on the fly by adding the base ES model .. code-block:: python class Author(ESBoundModel): user = models.ForeignKey( User, on_delete=models.CASCADE ) publishing_name = models.CharField( max_length=25, blank=True, null=True ) # Fields to be picked up and cached in model es_cached_model_fields = ['publishing_name', 'user'] **Casting db model fields into Elasticsearch format** This plugin works with a principle that fields should be ready to be serialized into Elasticsearch data structures like `sets` for instance will fail if you try to index them into Elasticsearch. By default this plugin casts the following base types to Elasticsearch compatible values. - models.Model -> integer containing the models pk - datetime.datetime -> string in the format 'YYYY-MM-DD HH:MM:SS' - all other values -> str(value) (attempt to cast all other values) If this mapping doesn't suit you or you wish to extend it you can do so by overriding the `convert_to_indexable_format` method on the model. .. code-block:: python class Author(ESBoundModel): def convert_to_indexable_format(self, value): if isinstance(value, float): # Round value for uniform integer value return round(value) # ... any further field rules **Setting non model fields on index** By default `es_cached_model_fields` will only support database fields for indexing this is for performance reasons where often you might want to index a complex piece of data that may take a while to generate over larger database tables. To get around this this plugin supports a different approach for any fields that aren't stored directly on this model. To this end we make use of the `ExtraModelFieldBase` class to define a resolver for a custom field that will work over larger data-sets in way that can be made more efficient as your data-set grows and requirements change. For example: .. code-block:: python from django_elasticsearch_model_binder import ExtraModelFieldBase class UniqueIdentiferField(ExtraModelFieldBase): # Name of the custom field we want indexed for the model. field_name = 'total_number_of_duplicate_names' @classmethod def custom_model_field_map(cls, model_pks): """ Generate map of number of duplicate first names per model. """ values = ( cls.objects .filter(pk__in=model_pks) .values_list('pk', 'first_name') ) name_count_map = defaultdict(int) for _, name in values: name_count_map[name] += 1 # Return map of model pk to value we want # indexed into Elasticsearch return { pk: name_count_map[name] for pk, name in values } class User(ESBoundModel): first_name = model.CharField() es_cached_extra_fields = (UniqueIdentiferField,) This will result in an index being created for the user model with a single custom field per model document set too: .. code-block:: python {total_number_of_duplicate_names: <int>} **Setting index name** This example is fairly basic it will create an Elasticsearch index generated with an index name comprised of the model class name and its module path directory. this can be overridden by setting the `index_name` field in the model: .. code-block:: python class Author(ESBoundModel): index_name ='my-custom-index-name' or overriding the `get_index_base_name` method, by default the index will be generated with a name reflecting the modules path and model name e.g. .. code-block:: python <module-path>-<model-name>-<unique-uuid> **Default Aliases** By default this plugin generates the index on first start of the app if it hasn't been defined. It also generates a default read/write alias that allows indexes to be rebuilt on the fly with no downtime for your app. Aliases utilise the same index name as their parent but are postfixed by default with a `-read`/`-write` to help differentiate from the main index. you can override this on the model by defining your own postfix, e.g. .. code-block:: python class Author(ESBoundModel): index_name ='my-custom-index-name' es_index_alias_read_postfix = 'read-only-access' es_index_alias_write_postfix = 'write-only-access' Will generate aliases in the format of: - my-custom-index-name-read-only-access - my-custom-index-name-write-only-access Or define your own way by overriding the default `get_read_alias_name`/`get_write_alias_name` **Saving/Removing db model in Elasticsearch** Saving and removing a model in ElasticSearch happens automatically on `.save`/ `.delete` operations. This should be noted as any `bulk_create`/`bulk_update` will ignore this and you'll need to manage these cases within your business logic of the app. See below for how to do these operations in bulk where this is a requirement of the business case. **Preforming bulk operations** This plugin also supports a handy set of calls that can be tied into a query manager to bulk create/update/delete these models in Elasticsearch. To enable this you'll need to add the plugins query manager mixin to your model, for example. .. code-block:: python from django.db.models import QuerySet from django_elasticsearch_model_binder.mixins import ESQuerySetMixin class ESEnabledQuerySet(ESQuerySetMixin, QuerySet): pass class Author(ESBoundModel): index_name ='my-custom-index-name' es_index_alias_read_postfix = 'read-only-access' es_index_alias_write_postfix = 'write-only-access' objects = ESEnabledQuerySet.as_manager() You can then define a query via the manager targeting the models you want to update, delete from Elasticsearch e.g. .. code-block:: python # Re-save models with selected fields into Elasticsearch Author.objects.filter(pk__lt=100).reindex_into_es() # Delete models with selected fields into Elasticsearch Author.objects.filter(pk__lt=100).delete_from_es() **QuerySet filtering** As noted above theres a number of operations that can be made off of the Queryset mixin. As expected this supports filtering of Queryset results by some defined ElasticSearch query. Say we wanted to filter a table by the prefix of a Charfield indexed in ElasticSearch we can go: .. code-block:: python query = { 'match': { 'publishing_name': 'Bobby*' } } queryset = Author.objects.filter_by_es_search(query=query) >> queryset.values_list('publishing_name', flat=True) >> ['Bobby Fakington', 'Bobby not-realington'] Supported by the `sort_query` kwarg you can also specify a queryset return ordering for the `filter_by_es_search`. .. code-block:: python queryset = Author.objects.filter_by_es_search( query={'prefix': {'publishing_name.keyword': 'Bill'}}, sort_query=[{ 'publishing_name.keyword': { 'order': 'asc', 'missing': '_last' } }] ) This is useful in cases where ES backed field sorting trumps any model defined `order_by`. **Retrieving ES fields** Pulling cached fields back from Elasticsearch can be preformed both on the model and related manager if the `ESQuerySetMixin` is used. From the model: .. code-block:: python >>> author = Author.objects.first() >>> author.retrive_es_fields() From the QuerySet: .. code-block:: python >>> Author.objects.filter(pk__lt=100).retrieve_es_docs() You can also retrieve the verbose output of the query by using the `only_include_fields=False` on both the above calls. **Rebuilding an entire table in Elasticsearch** At times you may want to throw away your current index and replace it with a new one. For larger data-sets this can be problematic as downtime while this rebuilds is unacceptable. This plugin exposes a simple method to preform a complete refresh of the index from either the entire models table or from a slice of the table defined by a queryset. This will automatically create a new index and point the write alias to it while allowing the old index to be used with the read alias for your app until the rebuild is finished, resulting in no index downtime. This can be run from shell or any kind of automated task by running: .. code-block:: python # Full table rebuild of the Author model. >>> Author.rebuild_es_index() # Full table rebuild of the Author model. >>> sliced_queryset = Author.objects.filter(pk__lt=100) >>> Author.rebuild_es_index(queryset=sliced_queryset) **Setting indexable format** Indexes are only rebuilt sharding accoring to configuration on a full index rebuild `rebuild_es_index`. To alter how the index is searched with Elasticsearch you'll need to override the `get_index_mapping`. By default this is set to an empty implementation e.g. .. code-block:: python @classmethod def get_index_mapping(cls): return {'settings': {}, 'mappings': {}} But you can extend this with any mapping you'd like for the fields being indexed.


نیازمندی

مقدار نام
- django
- elasticsearch


نحوه نصب


نصب پکیج whl django-elasticsearch-model-binder-0.1.1:

    pip install django-elasticsearch-model-binder-0.1.1.whl


نصب پکیج tar.gz django-elasticsearch-model-binder-0.1.1:

    pip install django-elasticsearch-model-binder-0.1.1.tar.gz