معرفی شرکت ها


django-celery-token-bucket-2.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A token bucket implementation for celery rate limiting in Django
ویژگی مقدار
سیستم عامل -
نام فایل django-celery-token-bucket-2.1.0
نام django-celery-token-bucket
نسخه کتابخانه 2.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jens Nistler <opensource@jensnistler.de>, Richard Ackon <richard.ackon@stroeer-online-marketing.de>
ایمیل نویسنده opensource@regiohelden.de
آدرس صفحه اصلی https://github.com/RegioHelden/django-celery-token-bucket
آدرس اینترنتی https://pypi.org/project/django-celery-token-bucket/
مجوز MIT
# Django celery token bucket A dynamic [token bucket](https://medium.com/analytics-vidhya/celery-throttling-setting-rate-limit-for-queues-5b5bf16c73ce) implementation using the database scheduler [django celery beat](https://github.com/celery/django-celery-beat). ## How it works The bucket is represented by a celery queue that will not be processed by a worker but just hold our tokens (messages). Whenever a rate limited task should be run, the decorator tries to consume a message from that queue. If the queue is empty, the task gets retried after the defined timeout. A periodic task will then refill the bucket with tokens whenever they should be available again. ## Define a token bucket Buckets are defined in the Django config. Following example allows one thousand tokens per hour to throttle access to a rate limited third party API. Add to `settings.py` of your project. ```python from typing import Dict from celery import schedules from django_celery_token_bucket import TokenBucket INSTALLED_APPS = [ ..., 'django_celery_token_bucket' ] CELERY_TOKEN_BUCKETS: Dict[str, TokenBucket] = { "my_api_client": TokenBucket( name="my_api_client", schedule=schedules.crontab(minute=0), # once every hour amount=1000, maximum=1000, ) } ``` ### name The name must only consist of letters, numbers and the underscore character as it's used in the name of the celery queue. It should also be the same as the key in the CELERY_TOKEN_BUCKETS dictionary. ### schedule A `celery.schedules.crontab` that defines when the tokens should be refilled. ### amount The amount of tokens to add whenever the scheduled refill is run. ### maximum The maximum amount of tokens our bucket can hold. ### token_refill_queue Override this setting if you want token refill tasks for this bucket to be placed on a specific queue. This field is by default None. If no value is provided, the `CELERY_DEFAULT_QUEUE` setting is used or `celery` ## Sync period tasks to refill the buckets A management command `token_bucket_register_periodic_tasks` is provided that should be run during deployment of your application to sync the period tasks and make sure that buckets get properly refilled. ## Use the rate_limit decorator The decorator will make sure that the task that gets decorated will not exceed the limit of available tokens. Decorated tasks must always be [bound](https://docs.celeryq.dev/en/latest/userguide/tasks.html#bound-tasks) to allow access to the task instance. ```python from my_app.celery import celery_app from django_celery_token_bucket.decorators import rate_limit @celery_app.task(bind=True) @rate_limit(token_bucket="my_api_client", countdown=300) def my_tasK(self, *args, **kwargs): return ``` ### token_bucket Name of the token bucket to consume from. Must be defined in the settings (see above) or will fail with an Exception. ### countdown Time to wait in seconds before the next try when no token is available. ### affect_task_retries Defaults to `False` By default a failed token retrieval will not impact the retry count of your task. To change this behavior, set `affect_task_retries` to `True`. ```python @celery_app.task(bind=True, max_retries=3, countdown=60) @rate_limit(token_bucket="my_api_client", countdown=300, affect_task_retries=True) def my_tasK(self, *args, **kwargs): return ``` In this scenario, a failed token retrieval will increase the retry count of the task decorator. If we cannot get a token on the first try, we will start over again with the 2nd try. ## Run the tests locally A docker compose environment is provided to easily run the tests: ```bash docker compose run --rm app test ``` ## Making a new release [bumpversion](https://github.com/peritus/bumpversion) is used to manage releases. Add your changes to the [CHANGELOG](./CHANGELOG.md), run ```bash bumpversion <major|minor|patch> ``` and push (including tags).


نیازمندی

مقدار نام
>=5.0.0 celery
>=3.2 Django
>=2.4.0 django-celery-beat
>=5.2.4 kombu


نحوه نصب


نصب پکیج whl django-celery-token-bucket-2.1.0:

    pip install django-celery-token-bucket-2.1.0.whl


نصب پکیج tar.gz django-celery-token-bucket-2.1.0:

    pip install django-celery-token-bucket-2.1.0.tar.gz