معرفی شرکت ها


diviner-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Diviner: A Grouped Forecasting API
ویژگی مقدار
سیستم عامل -
نام فایل diviner-0.1.1
نام diviner
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Databricks
ایمیل نویسنده benjamin.wilson@databricks.com
آدرس صفحه اصلی https://github.com/databricks/diviner
آدرس اینترنتی https://pypi.org/project/diviner/
مجوز Apache2.0
Diviner: Grouped Timeseries Forecasting at scale ================================================ Diviner is an execution framework wrapper around popular open source time series forecasting libraries. The aim of the project is to simplify the creation, training, orchestration, and MLOps logistics associated with forecasting projects that involve the predictions of many discrete independent events. |docs| |build| |examples| |core| |pypi| |license| |downloads| .. |docs| image:: https://img.shields.io/badge/docs-latest-success.svg?style=for-the-badge&logo=readthedocs :target: https://databricks-diviner.readthedocs.io/en/latest/?badge=latest :alt: Documentation .. |build| image:: https://img.shields.io/github/workflow/status/databricks/diviner/Test%20package%20build?label=Build%20CI&style=for-the-badge&logo=github :target: https://github.com/databricks/diviner/actions/workflows/test-package-build.yml :alt: Build CI .. |examples| image:: https://img.shields.io/github/workflow/status/databricks/diviner/Examples?label=Examples&style=for-the-badge&logo=github :target: https://github.com/databricks/diviner/actions/workflows/examples.yml :alt: Examples CI .. |core| image:: https://img.shields.io/github/workflow/status/databricks/diviner/Diviner%20tests?label=Core%20CI&style=for-the-badge&logo=github :target: https://github.com/databricks/diviner/actions/workflows/main.yml :alt: Core CI .. |pypi| image:: https://img.shields.io/pypi/v/diviner.svg?style=for-the-badge&logo=pypi&logoColor=white :target: https://pypi.org/project/diviner/ :alt: Latest Python Release .. |license| image:: https://img.shields.io/badge/license-Apache%202-brightgreen.svg?style=for-the-badge&logo=apache :target: https://github.com/databricks/diviner/blob/main/LICENSE.txt :alt: Apache 2 License .. |downloads| image:: https://img.shields.io/pypi/dm/diviner?style=for-the-badge&logo=pypi&logoColor=white :target: https://pepy.tech/project/diviner :alt: Total Downloads Is this right for my project? ----------------------------- Diviner is meant to help with large-scale forecasting. Instead of describing each individual use case where it may be applicable, here is a non-exhaustive list of projects that it would fit well as a solution for: * Forecasting regional sales within each country that a company does business in per day * Predicting inventory demand at regional warehouses for thousands of products * Forecasting traveler counts at each airport within a country daily * Predicting electrical demand per neighborhood (or household) in a multi-state region Each of these examples has a *common theme*: * The data is temporally homogenous (all of the data is collected daily, hourly, weekly, etc.). * There is a large number of individual models that need to be built due to the cardinality of the data. * There is no guarantee of seasonal, trend, or residual homogeneity in each series. * Varying levels of aggregation may be called for to solve different use cases. The primary problem that Diviner solves is managing the execution of many discrete time-series modeling tasks. Diviner provides a high-level API and metadata management approach that relieves the operational burden of managing hundreds or thousands of individual models. Grouped Modeling Wrappers ------------------------- Currently, Diviner supports the following open source libraries for forecasting at scale: * `prophet <https://facebook.github.io/prophet/docs/quick_start.html>`_ * `pmdarima <http://alkaline-ml.com/pmdarima/>`_ Installing ---------- Install Diviner from PyPI via: ``pip install diviner`` Documentation ------------- Documentation, Examples, and Tutorials for Diviner can be found `here <https://databricks-diviner.readthedocs.io/en/latest/index.html>`_. Community & Contributing ------------------------ For assistance with Diviner, see the `docs <https://databricks-diviner.readthedocs.io/en/latest/index.html>`_. Contributions to Diviner are welcome. To file a bug, request a new feature, or to contribute a feature request, please open a GitHub issue. The team will work with you to ensure that your contributions are evaluated and appropriate feedback is provided. See the `contributing guidelines <https://github.com/databricks/diviner/tree/main/CONTRIBUTING.rst>`_ for submission guidance.


نیازمندی

مقدار نام
- numpy
- pandas
- prophet
- pmdarima
- packaging


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl diviner-0.1.1:

    pip install diviner-0.1.1.whl


نصب پکیج tar.gz diviner-0.1.1:

    pip install diviner-0.1.1.tar.gz