معرفی شرکت ها


divik-3.2.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Divisive iK-means algorithm implementation
ویژگی مقدار
سیستم عامل -
نام فایل divik-3.2.2
نام divik
نسخه کتابخانه 3.2.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Grzegorz Mrukwa
ایمیل نویسنده g.mrukwa@gmail.com
آدرس صفحه اصلی https://github.com/gmrukwa/divik
آدرس اینترنتی https://pypi.org/project/divik/
مجوز Apache-2.0
[![CodeFactor](https://www.codefactor.io/repository/github/gmrukwa/divik/badge)](https://www.codefactor.io/repository/github/gmrukwa/divik) [![Maintainability](https://api.codeclimate.com/v1/badges/4cf5d42d0a0076c38445/maintainability)](https://codeclimate.com/github/gmrukwa/divik/maintainability) ![](https://github.com/gmrukwa/divik/workflows/Build%20and%20push%20deployment%20images/badge.svg) ![](https://github.com/gmrukwa/divik/workflows/Run%20unit%20tests/badge.svg) [![Documentation Status](https://readthedocs.org/projects/divik/badge/?version=latest)](https://divik.readthedocs.io/en/latest/?badge=latest) # divik Python implementation of Divisive iK-means (DiviK) algorithm. ## Tools within this package - Clustering at your command line with fit-clusters - Set of algorithm implementations for unsupervised analyses - Clustering - DiviK - hands-free clustering method with built-in feature selection - K-Means with Dunn method for selecting the number of clusters - K-Means with GAP index for selecting the number of clusters - Modular K-Means implementation with custom distance metrics and initializations - Feature extraction - PCA with knee-based components selection - Locally Adjusted RBF Spectral Embedding - Feature selection - EXIMS - Gaussian Mixture Model based data-driven feature selection - High Abundance And Variance Selector - allows you to select highly variant features above noise level, based on GMM-decomposition - Outlier based Selector - Outlier Abundance And Variance Selector - allows you to select highly variant features above noise level, based on outlier detection - Percentage based Selector - allows you to select highly variant features above noise level with your predefined thresholds for each - Sampling - StratifiedSampler - generates samples of fixed number of rows from given dataset - UniformPCASampler - generates samples of random observations within boundaries of an original dataset, and preserving the rotation of the data - UniformSampler - generates samples of random observations within boundaries of an original dataset ## Installation ### Docker The recommended way to use this software is through [Docker](https://www.docker.com/). This is the most convenient way, if you want to use `divik` application. To install latest stable version use: ```bash docker pull gmrukwa/divik ``` ### Python package Prerequisites for installation of base package: - Python 3.7 / 3.8 / 3.9 - compiler capable of compiling the native C code and OpenMP support #### Installation of OpenMP for Ubuntu / Debian You should have it already installed with GCC compiler, but if somehow not, try the following: ```bash sudo apt-get install libgomp1 ``` #### Installation of OpenMP for Mac OpenMP is available as part of LLVM. You may need to install it with conda: ```bash conda install -c conda-forge "compilers>=1.0.4,!=1.1.0" llvm-openmp ``` #### Installation of dependencied on Mac You may see messages that some dependencies are invalid for the platform. It is a [known bug](https://github.com/actions/setup-python/issues/469), with [a workaround](https://github.com/actions/setup-python/issues/469#issuecomment-1192522949). Use: ```bash SYSTEM_VERSION_COMPAT=0 pip install divik ``` #### DiviK Installation Having prerequisites installed, one can install latest base version of the package: ```bash pip install divik ``` If you want to have compatibility with [`gin-config`](https://github.com/google/gin-config), you can install necessary extras with: ```bash pip install divik[gin] ``` **Note:** Remember about `\` before `[` and `]` in `zsh` shell. You can install all extras with: ```bash pip install divik[all] ``` ## High-Volume Data Considerations If you are using DiviK to run the analysis that could fail to fit RAM of your computer, consider disabling the default parallelism and switch to [dask](https://dask.org/). It's easy to achieve through configuration: - set all parameters named `n_jobs` to `1`; - set all parameters named `allow_dask` to `True`. **Note:** Never set `n_jobs>1` and `allow_dask=True` at the same time, the computations will freeze due to how `multiprocessing` and `dask` handle parallelism. ## Known Issues ### Segmentation Fault It can happen if the he `gamred_native` package (part of `divik` package) was compiled with different numpy ABI than scikit-learn. This could happen if you used different set of compilers than the developers of the scikit-learn package. In such a case, a handler is defined to display the stack trace. If the trace comes from `_matlab_legacy.py`, the most probably this is the issue. To resolve the issue, consider following the installation instructions once again. The exact versions get updated to avoid the issue. ## Contributing Contribution guide will be developed soon. Format the code with: ```bash isort -m 3 --fgw 3 --tc . black -t py36 . ``` ## References This software is part of contribution made by [Data Mining Group of Silesian University of Technology](http://www.zaed.polsl.pl/), rest of which is published [here](https://github.com/ZAEDPolSl). - [Mrukwa, G. and Polanska, J., 2020. DiviK: Divisive intelligent K-means for hands-free unsupervised clustering in biological big data. *arXiv preprint arXiv:2009.10706.*][1] [1]: https://arxiv.org/abs/2009.10706


نیازمندی

مقدار نام
>=0.2.0,<0.3.0 dask-distance
>=2.14.0 dask[dataframe]
>=0.5.0,<0.6.0) gin-config
>=2.8.0 h5py
>=6.0,<7.0) importlib-metadata
>=1.0.0,<2.0.0 joblib
>=0.5.1 kneed
>=3.3.3,<4.0.0 matplotlib
>=0.12.1 numpy
>=0.20.3 pandas
>=1.5.0,<2.0.0) polyaxon
>=0.14.1 scikit-image
>=0.19.0 scikit-learn
>=0.19.1 scipy
>=4.11.2 tqdm


زبان مورد نیاز

مقدار نام
>=3.7.1,<4.0 Python


نحوه نصب


نصب پکیج whl divik-3.2.2:

    pip install divik-3.2.2.whl


نصب پکیج tar.gz divik-3.2.2:

    pip install divik-3.2.2.tar.gz