معرفی شرکت ها


disvoice-prosody-0.0.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A pip installable version of the prosody function from jcvazquezc's DisVoice library
ویژگی مقدار
سیستم عامل -
نام فایل disvoice-prosody-0.0.5
نام disvoice-prosody
نسخه کتابخانه 0.0.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lurein Perera
ایمیل نویسنده lureinperera@gmail.com
آدرس صفحه اصلی https://github.com/lurein/DisVoice
آدرس اینترنتی https://pypi.org/project/disvoice-prosody/
مجوز -
## Prosody features ```sh prosody.py ``` Compute prosody features from continuous speech based on duration, fundamental frequency and energy. Static or dynamic features can be computed: Static matrix is formed with 103 features and include Num Feature Description -------------------------------------------------------------------------------------------------------------------------- Features based on F0 --------------------------------------------------------------------------------------------------------------------------- 1-6 F0-contour Avg., Std., Max., Min., Skewness, Kurtosis 7-12 Tilt of a linear estimation of F0 for each voiced segment Avg., Std., Max., Min., Skewness, Kurtosis 13-18 MSE of a linear estimation of F0 for each voiced segment Avg., Std., Max., Min., Skewness, Kurtosis 19-24 F0 on the first voiced segment Avg., Std., Max., Min., Skewness, Kurtosis 25-30 F0 on the last voiced segment Avg., Std., Max., Min., Skewness, Kurtosis -------------------------------------------------------------------------------------------------------------------------- Features based on energy --------------------------------------------------------------------------------------------------------------------------- 31-34 energy-contour for voiced segments Avg., Std., Skewness, Kurtosis 35-38 Tilt of a linear estimation of energy contour for V segments Avg., Std., Skewness, Kurtosis 39-42 MSE of a linear estimation of energy contour for V segment Avg., Std., Skewness, Kurtosis 43-48 energy on the first voiced segment Avg., Std., Max., Min., Skewness, Kurtosis 49-54 energy on the last voiced segment Avg., Std., Max., Min., Skewness, Kurtosis 55-58 energy-contour for unvoiced segments Avg., Std., Skewness, Kurtosis 59-62 Tilt of a linear estimation of energy contour for U segments Avg., Std., Skewness, Kurtosis 63-66 MSE of a linear estimation of energy contour for U segments Avg., Std., Skewness, Kurtosis 67-72 energy on the first unvoiced segment Avg., Std., Max., Min., Skewness, Kurtosis 73-78 energy on the last unvoiced segment Avg., Std., Max., Min., Skewness, Kurtosis -------------------------------------------------------------------------------------------------------------------------- Features based on duration --------------------------------------------------------------------------------------------------------------------------- 79 Voiced rate Number of voiced segments per second 80-85 Duration of Voiced Avg., Std., Max., Min., Skewness, Kurtosis 86-91 Duration of Unvoiced Avg., Std., Max., Min., Skewness, Kurtosis 92-97 Duration of Pauses Avg., Std., Max., Min., Skewness, Kurtosis 98-103 Duration ratios Pause/(Voiced+Unvoiced), Pause/Unvoiced, Unvoiced/(Voiced+Unvoiced), Voiced/(Voiced+Unvoiced), Voiced/Puase, Unvoiced/Pause --------------------------------------------------------------------------------------------------------------------------- The dynamic feature matrix is formed with 13 features computed for each voiced segment and contains: - 1 Duration of the voiced segment - 2-7. Coefficients of 5-degree Lagrange polynomial to model F0 contour - 8-13. Coefficients of 5-degree Lagrange polynomial to model energy contour Dynamic prosody features are based on Najim Dehak, "Modeling Prosodic Features With Joint Factor Analysis for Speaker Verification", 2007 ### Notes: 1. The fundamental frequency is computed the PRAAT algorithm. To use the RAPT method, change the "self.pitch method" variable in the class constructor. 2. When Kaldi output is set to "true" two files will be generated, the ".ark" with the data in binary format and the ".scp" Kaldi script file ### Runing Script is called as follows ```sh python prosody.py <file_or_folder_audio> <file_features> <static (true or false)> <plots (true or false)> <format (csv, txt, npy, kaldi, torch)> ``` ### Examples: Extract features in the command line ```sh python prosody.py "../audios/001_ddk1_PCGITA.wav" "prosodyfeaturesAst.txt" "true" "true" "txt" python prosody.py "../audios/001_ddk1_PCGITA.wav" "prosodyfeaturesUst.csv" "true" "true" "csv" python prosody.py "../audios/001_ddk1_PCGITA.wav" "prosodyfeaturesUdyn.pt" "false" "true" "torch" python prosody.py "../audios/" "prosodyfeaturesst.txt" "true" "false" "txt" python prosody.py "../audios/" "prosodyfeaturesst.csv" "true" "false" "csv" python prosody.py "../audios/" "prosodyfeaturesdyn.pt" "false" "false" "torch" python prosody.py "../audios/" "prosodyfeaturesdyn.csv" "false" "false" "csv" KALDI_ROOT=/home/camilo/Camilo/codes/kaldi-master2 export PATH=$PATH:$KALDI_ROOT/src/featbin/ python prosody.py "../audios/001_ddk1_PCGITA.wav" "prosodyfeaturesUdyn" "false" "false" "kaldi" python prosody.py "../audios/" "prosodyfeaturesdyn" "false" "false" "kaldi" ``` Extract features directly in Python ``` from prosody import Prosody prosody=Prosody() file_audio="../audios/001_ddk1_PCGITA.wav" features1=prosody.extract_features_file(file_audio, static=True, plots=True, fmt="npy") features2=prosody.extract_features_file(file_audio, static=True, plots=True, fmt="dataframe") features3=prosody.extract_features_file(file_audio, static=False, plots=True, fmt="torch") prosody.extract_features_file(file_audio, static=False, plots=False, fmt="kaldi", kaldi_file="./test") ``` [Jupyter notebook](https://github.com/jcvasquezc/DisVoice/blob/master/notebooks_examples/prosody_features.ipynb) #### Results: Prosody analysis from continuous speech static ![Image](https://raw.githubusercontent.com/jcvasquezc/DisVoice/master/images/prosody1.png) ![Image](https://raw.githubusercontent.com/jcvasquezc/DisVoice/master/images/prosody3.png) #### References [[1]](http://ieeexplore.ieee.org/abstract/document/4291597/). N., Dehak, P. Dumouchel, and P. Kenny. "Modeling prosodic features with joint factor analysis for speaker verification." IEEE Transactions on Audio, Speech, and Language Processing 15.7 (2007): 2095-2103. [[2]](http://www.sciencedirect.com/science/article/pii/S105120041730146X). J. R. Orozco-Arroyave, J. C. Vásquez-Correa et al. "NeuroSpeech: An open-source software for Parkinson's speech analysis." Digital Signal Processing (2017).


نحوه نصب


نصب پکیج whl disvoice-prosody-0.0.5:

    pip install disvoice-prosody-0.0.5.whl


نصب پکیج tar.gz disvoice-prosody-0.0.5:

    pip install disvoice-prosody-0.0.5.tar.gz