معرفی شرکت ها


distfit-1.6.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

distfit is a python library for probability density fitting.
ویژگی مقدار
سیستم عامل -
نام فایل distfit-1.6.9
نام distfit
نسخه کتابخانه 1.6.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Erdogan Taskesen
ایمیل نویسنده erdogant@gmail.com
آدرس صفحه اصلی https://erdogant.github.io/distfit
آدرس اینترنتی https://pypi.org/project/distfit/
مجوز -
<p align="center"> <a href="https://erdogant.github.io/pca/"> <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/logo.png" width="600" /> </a> </p> [![Python](https://img.shields.io/pypi/pyversions/distfit)](https://img.shields.io/pypi/pyversions/distfit) [![Pypi](https://img.shields.io/pypi/v/distfit)](https://pypi.org/project/distfit/) [![Docs](https://img.shields.io/badge/Sphinx-Docs-Green)](https://erdogant.github.io/distfit/) [![LOC](https://sloc.xyz/github/erdogant/distfit/?category=code)](https://github.com/erdogant/distfit/) [![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=month&units=international_system&left_color=grey&right_color=brightgreen&left_text=PyPI%20downloads/month)](https://pepy.tech/project/distfit) [![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=Downloads)](https://pepy.tech/project/distfit) [![License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/erdogant/distfit/blob/master/LICENSE) [![Forks](https://img.shields.io/github/forks/erdogant/distfit.svg)](https://github.com/erdogant/distfit/network) [![Issues](https://img.shields.io/github/issues/erdogant/distfit.svg)](https://github.com/erdogant/distfit/issues) [![Project Status](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![DOI](https://zenodo.org/badge/231843440.svg)](https://zenodo.org/badge/latestdoi/231843440) [![Medium](https://img.shields.io/badge/Medium-Blog-black)](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://erdogant.github.io/distfit/pages/html/Documentation.html#colab-notebook) [![Donate](https://img.shields.io/badge/Support%20this%20project-grey.svg?logo=github%20sponsors)](https://erdogant.github.io/distfit/pages/html/Documentation.html#) <!---[![BuyMeCoffee](https://img.shields.io/badge/buymea-coffee-yellow.svg)](https://www.buymeacoffee.com/erdogant)--> <!---[![Coffee](https://img.shields.io/badge/coffee-black-grey.svg)](https://erdogant.github.io/donate/?currency=USD&amount=5)--> # ### [Read the Medium Blog for more information](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog) # ``distfit`` is a python package for probability density fitting of univariate distributions for random variables. With the random variable as an input, distfit can find the best fit for parametric, non-parametric, and discrete distributions. * For the parametric approach, the distfit library can determine the best fit across 89 theoretical distributions. To score the fit, one of the scoring statistics for the good-of-fitness test can be used used, such as RSS/SSE, Wasserstein, Kolmogorov-Smirnov (KS), or Energy. After finding the best-fitted theoretical distribution, the loc, scale, and arg parameters are returned, such as mean and standard deviation for normal distribution. * For the non-parametric approach, the distfit library contains two methods, the quantile and percentile method. Both methods assume that the data does not follow a specific probability distribution. In the case of the quantile method, the quantiles of the data are modeled whereas for the percentile method, the percentiles are modeled. * In case the dataset contains discrete values, the distift library contains the option for discrete fitting. The best fit is then derived using the binomial distribution. # **⭐️ Star this repo if you like it ⭐️** # ### [Documentation pages](https://erdogant.github.io/distfit/) On the [documentation pages](https://erdogant.github.io/distfit/) you can find detailed information about the ``distfit`` library with many examples. # ### Installation ##### Install distfit from PyPI ```bash pip install distfit ``` ##### Install from github source (beta version) ```bash install git+https://github.com/erdogant/distfit ``` ##### Check version ```python import distfit print(distfit.__version__) ``` ##### The following functions are available after installation: ```python # Import library from distfit import distfit dfit = distfit() # Initialize dfit.fit_transform(X) # Fit distributions on empirical data X dfit.predict(y) # Predict the probability of the resonse variables dfit.plot() # Plot the best fitted distribution (y is included if prediction is made) ``` <hr> ### Examples # ##### [Example: Quick start to find best fit for your input data](https://erdogant.github.io/distfit/pages/html/Examples.html#) ```python # [distfit] >INFO> fit # [distfit] >INFO> transform # [distfit] >INFO> [norm ] [0.00 sec] [RSS: 0.00108326] [loc=-0.048 scale=1.997] # [distfit] >INFO> [expon ] [0.00 sec] [RSS: 0.404237] [loc=-6.897 scale=6.849] # [distfit] >INFO> [pareto ] [0.00 sec] [RSS: 0.404237] [loc=-536870918.897 scale=536870912.000] # [distfit] >INFO> [dweibull ] [0.06 sec] [RSS: 0.0115552] [loc=-0.031 scale=1.722] # [distfit] >INFO> [t ] [0.59 sec] [RSS: 0.00108349] [loc=-0.048 scale=1.997] # [distfit] >INFO> [genextreme] [0.17 sec] [RSS: 0.00300806] [loc=-0.806 scale=1.979] # [distfit] >INFO> [gamma ] [0.05 sec] [RSS: 0.00108459] [loc=-1862.903 scale=0.002] # [distfit] >INFO> [lognorm ] [0.32 sec] [RSS: 0.00121597] [loc=-110.597 scale=110.530] # [distfit] >INFO> [beta ] [0.10 sec] [RSS: 0.00105629] [loc=-16.364 scale=32.869] # [distfit] >INFO> [uniform ] [0.00 sec] [RSS: 0.287339] [loc=-6.897 scale=14.437] # [distfit] >INFO> [loggamma ] [0.12 sec] [RSS: 0.00109042] [loc=-370.746 scale=55.722] # [distfit] >INFO> Compute confidence intervals [parametric] # [distfit] >INFO> Compute significance for 9 samples. # [distfit] >INFO> Multiple test correction method applied: [fdr_bh]. # [distfit] >INFO> Create PDF plot for the parametric method. # [distfit] >INFO> Mark 5 significant regions # [distfit] >INFO> Estimated distribution: beta [loc:-16.364265, scale:32.868811] ``` <p align="left"> <a href="https://erdogant.github.io/distfit/pages/html/Examples.html#make-predictions"> <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/example_figP4c.png" width="450" /> </a> </p> # ##### [Example: Plot summary of the tested distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#plot-rss) After we have a fitted model, we can make some predictions using the theoretical distributions. After making some predictions, we can plot again but now the predictions are automatically included. <p align="left"> <a href="https://erdogant.github.io/distfit/pages/html/Examples.html#plot-rss"> <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/fig1_summary.png" width="450" /> </a> </p> # ##### [Example: Make predictions using the fitted distribution](https://erdogant.github.io/distfit/pages/html/Examples.html#make-predictions) <p align="left"> <a href="https://erdogant.github.io/distfit/pages/html/Examples.html#make-predictions"> <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/example_figP1a.png" width="450" /> </a> </p> # ##### [Example: Test for one specific distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-one-specific-distribution) The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html <p align="left"> <a href="https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-one-specific-distribution"> <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/example_figP3b.png" width="450" /> </a> </p> # ##### [Example: Test for multiple distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-multiple-distributions) The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html <p align="left"> <a href="https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-multiple-distributions"> <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/example_figP2b.png" width="450" /> </a> </p> # ##### [Example: Fit discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html) ```python from scipy.stats import binom # Generate random numbers # Set parameters for the test-case n = 8 p = 0.5 # Generate 10000 samples of the distribution of (n, p) X = binom(n, p).rvs(10000) print(X) # [5 1 4 5 5 6 2 4 6 5 4 4 4 7 3 4 4 2 3 3 4 4 5 1 3 2 7 4 5 2 3 4 3 3 2 3 5 # 4 6 7 6 2 4 3 3 5 3 5 3 4 4 4 7 5 4 5 3 4 3 3 4 3 3 6 3 3 5 4 4 2 3 2 5 7 # 5 4 8 3 4 3 5 4 3 5 5 2 5 6 7 4 5 5 5 4 4 3 4 5 6 2...] # Import distfit from distfit import distfit # Initialize for discrete distribution fitting dfit = distfit(method='discrete') # Run distfit to and determine whether we can find the parameters from the data. dfit.fit_transform(X) # [distfit] >fit.. # [distfit] >transform.. # [distfit] >Fit using binomial distribution.. # [distfit] >[binomial] [SSE: 7.79] [n: 8] [p: 0.499959] [chi^2: 1.11] # [distfit] >Compute confidence interval [discrete] ``` <p align="left"> <a href="https://erdogant.github.io/distfit/pages/html/Discrete.html"> <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/binomial_plot.png" width="450" /> </a> </p> # ##### [Example: Make predictions on unseen data for discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html#make-predictions) <p align="left"> <a href="https://erdogant.github.io/distfit/pages/html/Discrete.html#make-predictions"> <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/binomial_plot_predict.png" width="450" /> </a> </p> # ##### [Example: Generate samples based on the fitted distribution](https://erdogant.github.io/distfit/pages/html/Generate.html) <hr> ### Contributors Setting up and maintaining distfit has been possible thanks to users and contributors. Thanks: <p align="left"> <a href="https://github.com/erdogant/distfit/graphs/contributors"> <img src="https://contrib.rocks/image?repo=erdogant/distfit" /> </a> </p> ### Citation Please cite ``distfit`` in your publications if this is useful for your research. See column right for citation information. ### Maintainer * Erdogan Taskesen, github: [erdogant](https://github.com/erdogant) * Contributions are welcome. * If you wish to buy me a <a href="https://erdogant.github.io/donate/?currency=USD&amount=5">Coffee</a> for this work, it is very appreciated :)


نیازمندی

مقدار نام
- packaging
>=3.5.2 matplotlib
- numpy
- pandas
- tqdm
- statsmodels
- scipy
- pypickle
>=1.1.10 colourmap


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl distfit-1.6.9:

    pip install distfit-1.6.9.whl


نصب پکیج tar.gz distfit-1.6.9:

    pip install distfit-1.6.9.tar.gz