معرفی شرکت ها


distfeat-0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Library for manipulation of phonological distinctive features
ویژگی مقدار
سیستم عامل -
نام فایل distfeat-0.2
نام distfeat
نسخه کتابخانه 0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Tiago Tresoldi
ایمیل نویسنده tresoldi@shh.mpg.de
آدرس صفحه اصلی https://github.com/tresoldi/distfeat
آدرس اینترنتی https://pypi.org/project/distfeat/
مجوز MIT
# DistFeat Python library DistFeat is a Python library for manipulating segmental/distinctive phonological features. [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3902005.svg)](https://doi.org/10.5281/zenodo.3902005) [![PyPI](https://img.shields.io/pypi/v/distfeat.svg)](https://pypi.org/project/distfeat) [![Build Status](https://travis-ci.org/tresoldi/distfeat.svg?branch=master)](https://travis-ci.org/tresoldi/distfeat) [![codecov](https://codecov.io/gh/tresoldi/distfeat/branch/master/graph/badge.svg)](https://codecov.io/gh/tresoldi/distfeat) [![Codacy Badge](https://api.codacy.com/project/badge/Grade/aee2598d1c6d4e92aa2984a4703a7918)](https://app.codacy.com/manual/tresoldi/distfeat?utm_source=github.com&utm_medium=referral&utm_content=tresoldi/distfeat&utm_campaign=Badge_Grade_Dashboard) ## Installation and usage The library can be installed as any standard Python library with `pip`, and used as demonstrated in the following snippet: In any standard Python environment, `distfeat` can be installed with: ```bash $ pip install distfeat ``` Note that the command above will install the `pyclts` depency, but will not download any version of the CLTS data by default. Detailed instructions on how to use the library will be made available in the official documentation. Code documentation and test cases detail usage, along with the following section. ## Showcase Functionality is provided by means of a `DistFeat` class, which will automatically load the standard model upon instantiation: ```python >>> import distfeat >>> df = distfeat.DistFeat() ``` The most common functionality, obtaining a dictionary of features for a grapheme, is performed by the `.grapheme2features()` method. ```python >>> df.grapheme2features('a') {'anterior': True, 'approximant': True, 'back': False, 'click': False, 'consonantal': False, 'constricted': False, 'continuant': True, 'coronal': True, 'distributed': True, 'dorsal': True, 'high': False, 'labial': False, 'laryngeal': True, 'lateral': False, 'long': None, 'low': True, 'nasal': False, 'pharyngeal': None, 'place': True, 'preaspirated': None, 'preglottalized': None, 'prenasal': None, 'round': None, 'sibilant': False, 'sonorant': True, 'spread': False, 'strident': False, 'syllabic': True, 'tense': True, 'voice': True} ``` The `.graphemes2features()` method will by default returning a dictionary with boolean values, with sorted feature names. Arguments allow to skip the truth value conversion, returning the strings used for their representation, and to return a vector of values as a list. ```python >>> df.grapheme2features('a', t_values=False) {'anterior': '+', 'approximant': '+', 'back': '-', 'click': '-', 'consonantal': '-', 'constricted': '-', 'continuant': '+', 'coronal': '+', 'distributed': '+', 'dorsal': '+', 'high': '-', 'labial': '-', 'laryngeal': '+', 'lateral': '-', 'long': '0', 'low': '+', 'nasal': '-', 'pharyngeal': '0', 'place': '+', 'preaspirated': '0', 'preglottalized': '0', 'prenasal': '0', 'round': '0', 'sibilant': '-', 'sonorant': '+', 'spread': '-', 'strident': '-', 'syllabic': '+', 'tense': '+', 'voice': '+'} >>> df.grapheme2features('a', vector=True) [True, True, False, False, False, False, True, True, True, True, False, False, True, False, None, True, False, None, True, None, None, None, None, False, True, False, False, True, True, True] ``` The operationally inverse method `.features2graphemes()` returns a list of all graphemes that satisfy a set of features and their values (which can be provided both as truth values or as their strings). It is possible to drop undefined values by means of the `drop_na` argument. ```python >>> df.features2graphemes({"consonantal": "-", "anterior": "+", "high": "-"}) ['a', 'aː', 'ã', 'ãː', 'ă', 'ḁ', 'a̯', 'e', 'eː', 'ẽ', 'ẽː', 'ĕ', 'e̤', 'e̥', 'e̯', 'æ', 'æː', 'æ̃', 'æ̃ː', 'ø', 'øː', 'ø̃', 'ø̃ː', 'œ', 'œː', 'œ̃', 'œ̃ː', 'ɶ', 'ɶː', 'ɶ̃', 'ɶ̃ː'] ``` A minimal matrix of features needed to distinguish a set of graphemes can be obtained with the `.minimal_matrix()` method, which also allows to use strings for truth values and to drip undefined values. Like in the case of `.grapheme2features()`, a `vector` argument can be passed in order to obtain a list of values. As expected, the larger and more heterogeneous the set of graphemes, the larger the number of features needed. The snippet below also used the auxiliary `tabulate_matrix()` function, a wrapper to the `tabulate` library. ```python >>> distfeat.tabulate_matrix(df.minimal_matrix(["t", "d"])) constricted laryngeal spread voice -- ------------- ----------- -------- ------- d False True False True t False >>> distfeat.tabulate_matrix(df.minimal_matrix(["t", "d", "s"])) constricted continuant laryngeal sibilant spread strident voice -- ------------- ------------ ----------- ---------- -------- ---------- ------- d False False True False False False True s True False True True t False False False False >>> df.minimal_matrix(["t", "d"], vector=True) {'d': [False, True, False, True], 't': [None, False, None, None]} ``` The operationally inverse method to the one above is `.class_features()`, which provides a dictionary of features and values to constitute a class of sounds from a set of graphemes. Note that, while possible, this method does not drop undefined values by default. As expected, the larger and more heterogeneous the set graphemes, the fewer the number of feature/value pairs in common. ```python >>> df.class_features(["t", "d"]) {'anterior': True, 'approximant': False, 'click': False, 'consonantal': True, 'continuant': False, 'coronal': True, 'distributed': False, 'dorsal': False, 'labial': False, 'lateral': False, 'nasal': False, 'place': True, 'sibilant': False, 'sonorant': False, 'strident': False, 'syllabic': False, 'tense': False} >>> df.class_features(["t", "d", "s"]) {'anterior': True, 'approximant': False, 'click': False, 'consonantal': True, 'coronal': True, 'distributed': False, 'dorsal': False, 'labial': False, 'lateral': False, 'nasal': False, 'place': True, 'sonorant': False, 'syllabic': False, 'tense': False} ``` A simple command-line tool for querying the database is also provided. Experimental support for segment distance is available as well, as demonstrated below. It requires the `sklearn` library, which is *not* listed as a requirement and, as such, is not installed by default. As models and regressors are not cached, the training phase might take longer than expected. ```python >>> df.distance("a", "e") 5.501464265353438 >>> df.distance("a", "u") 6.773080283814581 >>> df.distance("w", "u") 0.9799320477423237 >>> df.distance("s", "ʒ") 10.139607771554383 ``` ## Changelog Version 0.2: - Added initial support for segment distance Version 0.1.1: - Added unround open-mid front vowels which were missing from the default model - Added a model derived from Phoible Version 0.1: - First public release ## TODO - Allow to specify, check, and derive geometries - Decide whether to have `.features2graphemes()` defaulting to boolean values (i.e., `t_values=True`) - Decide on how to specify undefined when using truth values, such as in `.features2graphemes()` (considering that `None` cannot be passed as a value) - Extend the command-line tool to call most if not all functions ## Community guidelines While the author can be contacted directly for support, it is recommended that third parties use GitHub standard features, such as issues and pull requests, to contribute, report problems, or seek support. Contributing guidelines, including a code of conduct, can be found in the `CONTRIBUTING.md` file. ## Author and citation The library is developed by Tiago Tresoldi (tresoldi@shh.mpg.de). The author has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. [ERC Grant #715618](https://cordis.europa.eu/project/rcn/206320/factsheet/en), [Computer-Assisted Language Comparison](https://digling.org/calc/). If you use `distfeat` or the standard feature model distributed with it, please cite it as: > Tresoldi, Tiago (2020). DistFeat, a Python library for manipulating segmental and distinctive features. Version 0.1.1. Jena. DOI: 10.5281/zenodo.3902005 In BibTeX: ```bibtex @misc{Tresoldi2020distfeat, author = {Tresoldi, Tiago}, title = {DistFeat, a Python library for manipulating segmental and distinctive features. Version 0.1.}, howpublished = {\url{https://github.com/tresoldi/distfeat}}, address = {Jena}, year = {2020}, doi = {10.5281/zenodo.3902005} } ```


نیازمندی

مقدار نام
- pyclts
- tabulate


نحوه نصب


نصب پکیج whl distfeat-0.2:

    pip install distfeat-0.2.whl


نصب پکیج tar.gz distfeat-0.2:

    pip install distfeat-0.2.tar.gz