معرفی شرکت ها


distance3d-0.7.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Distance computation and collision detection in 3D.
ویژگی مقدار
سیستم عامل -
نام فایل distance3d-0.7.1
نام distance3d
نسخه کتابخانه 0.7.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alexander Fabisch
ایمیل نویسنده afabisch@googlemail.com
آدرس صفحه اصلی https://github.com/AlexanderFabisch/distance3d
آدرس اینترنتی https://pypi.org/project/distance3d/
مجوز BSD-3-Clause
![continuous integration](https://github.com/AlexanderFabisch/distance3d/actions/workflows/ci.yml/badge.svg) [![codecov](https://codecov.io/gh/AlexanderFabisch/distance3d/branch/master/graph/badge.svg?token=GJE5ZMVVB8)](https://codecov.io/gh/AlexanderFabisch/distance3d) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.6509736.svg)](https://doi.org/10.5281/zenodo.6509736) # distance3d Distance computation and collision detection in 3D. <table> <tr> <td><img src="https://raw.githubusercontent.com/AlexanderFabisch/distance3d/master/doc/source/_static/robot_collision_detection.png" width=100% /></td> <td><img src="https://raw.githubusercontent.com/AlexanderFabisch/distance3d/master/doc/source/_static/capsule_collisions.png" width=100% /></td> </tr> <tr> <td><a href="https://github.com/AlexanderFabisch/distance3d/blob/master/examples/visualizations/vis_robot_collision_objects.py">Robot collision detection</a></td> <td><a href="https://github.com/AlexanderFabisch/distance3d/blob/master/examples/visualizations/vis_capsules_benchmark.py">Capsule collision detection</a></td> </tr> <tr> <td><img src="https://raw.githubusercontent.com/AlexanderFabisch/distance3d/master/doc/source/_static/closest_points.png" width=100% /></td> <td><img src="https://raw.githubusercontent.com/AlexanderFabisch/distance3d/master/doc/source/_static/hydroelastic_contact_surface.png" width=100% /></td> </tr> <tr> <td><a href="https://github.com/AlexanderFabisch/distance3d/blob/master/examples/visualizations/vis_closest_points.py">Closest points</a></td> <td><a href="https://github.com/AlexanderFabisch/distance3d/blob/master/examples/visualizations/vis_pressure_field.py">Hydroelastic contact</a></td> </tr> </table> ## Features * Collision detection and distance computation with GJK. * Calculation of penetration depth with EPA. * Collision detection and calculation of penetration depth with MPR. * Various specific distance calculations for points, lines, line segments, planes, triangles, rectangles, circles, disks, boxes, cylinders, ellipsoids, ... * Broad phase collision detection with bounding volume hierarchy (AABB tree). * Self-collision detection for robots. * Contact wrench computation with hydroelastic contact model (pressure field model). ## Dependencies distance3d relies on numba to speed up computations. numba in its latest version requires at least Python 3.7 and NumPy 1.18. See [here]( https://numba.readthedocs.io/en/stable/user/installing.html#compatibility) for current requirements. Required Python libraries will automatically be installed during installation of distance3d. ## Installation Install the package with pip install -e . or from PyPI with pip install distance3d ## Unit Tests Install dependencies with pip install -e .[test] Run unit tests with NUMBA_DISABLE_JIT=1 pytest You will find the coverage report in `htmlcov/index.html`. ## API Documentation Install dependencies with pip install -e .[doc] Build API documentation with cd doc make html You will find the documentation in `doc/build/html/index.html`. ## Licenses These implementations are mostly based on * Christer Ericson: Real-Time Collision Detection, CRC Press, 2004. * David H. Eberly: 3D Game Engine Design, CRC Press, 2006. and accompanying implementations. These are marked as such. The distance computation between a line and a circle is based on David Eberly's implementation, Copyright (c) 1998-2022 David Eberly, Geometric Tools, Redmond WA 98052, distributed under the Boost Software License, Version 1.0. The original GJK algorithm is a translation to Python of the translation to C of the original Fortran implementation. The C implementation is from Diego Ruspini. It is available from http://realtimecollisiondetection.net/files/gilbert.c Some features related to the GJK algorithm have been inspired by [Bullet](https://github.com/bulletphysics/bullet3/) (zlib license) and are marked as such in the source code. The EPA algorithm is adapted from [Kevin Moran's GJK implementation](https://github.com/kevinmoran/GJK) (MIT License or Unlicense). A GJK intersection test and the MPR algorithm are based on libccd (for details, see https://github.com/danfis/libccd). For the original code the copyright is of Daniel Fiser <danfis@danfis.cz>. It has been released under 3-clause BSD license. The main GJK implementation is based on Jolt Physics, Copyright 2021 Jorrit Rouwe, MIT license. The translation to Python has been done by Alexander Fabisch and the glue code around it is licensed under the 3-clause BSD license.


نحوه نصب


نصب پکیج whl distance3d-0.7.1:

    pip install distance3d-0.7.1.whl


نصب پکیج tar.gz distance3d-0.7.1:

    pip install distance3d-0.7.1.tar.gz