معرفی شرکت ها


disstans-1.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DISSTANS
ویژگی مقدار
سیستم عامل -
نام فایل disstans-1.1.1
نام disstans
نسخه کتابخانه 1.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Tobias Köhne
ایمیل نویسنده 47008700+tobiscode@users.noreply.github.com
آدرس صفحه اصلی https://github.com/tobiscode/disstans
آدرس اینترنتی https://pypi.org/project/disstans/
مجوز GNU General Public License v3 (GPLv3)
# The DISSTANS Python package Welcome to the package repository for the **D**ecomposition and **I**nference of **S**ources through **S**patio**t**emporal **A**nalysis of **N**etwork **S**ignals (DISSTANS) toolbox. With DISSTANS, you can: - Fit GNSS displacement (or any type of) timeseries using a variety of functional models. These range from common ones such as a polynomial, a sinusoid, or a logarithm, to more complex ones as modulated sinusoids or dictionary of splines. - Solve for model parameters using least squares with no regularization or using any of the L2, L1, and L0 norms. Spatial L0 allows to use expected spatial coherence in the data to improve local fits. - Take advantage of multiprocessor systems using multiple threads for the most computationally heavy steps. - Perform PCA/ICA-based common mode estimation and timeseries basis decomposition. - Clean data from outliers. - Visualize timeseries, network maps, dictionary scalograms, station motions, model parameter correlations, and more. - Manage databases of raw RINEX files, including availability plots. - Download GNSS timeseries from public sites. - Use catalogued seismic and maintenance events to inform the model setup. - Detect jumps in the data using a simple step detector. - Run the [MIDAS](https://doi.org/10.1002/2015JB012552) algorithm. - Generate synthetic timeseries. - Load timeseries in JPL's `.tseries` or UNR's `.tenv3` formats natively, or load standard NumPy and pandas data. All from within your Python shell, and everything in standard Python object-oriented programming style, allowing you to easily subclass existing code to suit your individual needs. ## Documentation A peer-reviewed study has been published (see _Using and citing this work_ below) that explains the concept, inner workings, goals, and successes of DISSTANS in detail. You can find the final version [here](https://doi.org/10.1016/j.cageo.2022.105247), and the accepted preprint [here](https://doi.org/10.31223/X56K9J). Furthermore, DISSTANS contains full code annotation, an API documentation, as well as tutorials and real-data examples that show the usage of the package. The documentation can be found in the `docs/` folder. It is hosted on GitHub publicly at [tobiscode.github.io/disstans](https://tobiscode.github.io/disstans), but you can also read it locally, e.g., by running `python -m http.server 8080 --bind 127.0.0.1` from with the documentation folder and then opening a browser. ## Installation The full installation instructions, including necessary prerequisites, can be found [in the documentation](https://tobiscode.github.io/disstans/installation.html). If you're happy with a minimal installation (no local documentation, not suited for modifications, without experimental newest commits), then the short answer is: ``` bash # download the environment file wget https://raw.githubusercontent.com/tobiscode/disstans/main/environment.yml # create the environment, including all prerequisites conda env create -f environment.yml # activate the environment conda activate disstans # install DISSTANS from the Python Package Index (PyPI) pip install disstans ``` Updating the code is then just: ``` bash pip install --upgrade disstans ``` ## Using and citing this work Please note that this work is under a GPL-3.0 License. If you're using this code or any parts of it, please cite the following study: Köhne, T., Riel, B., & Simons, M. (2023). _Decomposition and Inference of Sources through Spatiotemporal Analysis of Network Signals:_ _The DISSTANS Python package._ Computers & Geosciences, 170, 105247. DOI: [10.1016/j.cageo.2022.105247](https://doi.org/10.1016/j.cageo.2022.105247) You can find the accepted preprint [here](https://doi.org/10.31223/X56K9J). A poster introducing the code was presented at the AGU Fall Meeting 2021, you can find it [here](https://doi.org/10.1002/essoar.10509232.1). ## Acknowledgments This code would not be possible without the work of others, such as: - The inspiration for this code, [pygeodesy](https://github.com/bryanvriel/pygeodesy) by Bryan V. Riel - The [MIDAS code](http://geodesy.unr.edu/MIDAS_release.tar) by Geoff Blewitt - The powerlaw noise generation code [colorednoise](https://github.com/felixpatzelt/colorednoise) by Felix Patzelt - The wrapper for the Okada elastic dislocation model [okada_wrapper](https://github.com/tbenthompson/okada_wrapper/) by Thomas Ben Thompson ## Reporting bugs and getting involved If you find a bug or have a question about the code, please raise an issue on GitHub. If you have any other comment, feedback, or suggestion, feel free to send me an email to [tkoehne@caltech.edu](mailto:tkoehne@caltech.edu). Similarly, if you want to contribute to any part of the code (functions, classes, documentation, examples, etc.), please send me an email - contributions of all kinds are always welcome!


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl disstans-1.1.1:

    pip install disstans-1.1.1.whl


نصب پکیج tar.gz disstans-1.1.1:

    pip install disstans-1.1.1.tar.gz