معرفی شرکت ها


dispy-4.9.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Distributed and Parallel Computing with/for Python.
ویژگی مقدار
سیستم عامل -
نام فایل dispy-4.9.1
نام dispy
نسخه کتابخانه 4.9.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Giridhar Pemmasani
ایمیل نویسنده pgiri@yahoo.com
آدرس صفحه اصلی https://dispy.org
آدرس اینترنتی https://pypi.org/project/dispy/
مجوز Apache 2.0
dispy ###### .. note:: Full documentation for dispy is now available at `dispy.org <https://dispy.org>`_. `dispy <https://dispy.org>`_ is a comprehensive, yet easy to use framework for creating and using compute clusters to execute computations in parallel across multiple processors in a single machine (SMP), among many machines in a cluster, grid or cloud. dispy is well suited for data parallel (SIMD) paradigm where a computation is evaluated with different (large) datasets independently with no communication among computation tasks (except for computation tasks sending intermediate results to the client). dispy works with Python versions 2.7+ and 3.1+ on Linux, Mac OS X and Windows; it may work on other platforms (e.g., FreeBSD and other BSD variants) too. Features -------- * dispy is implemented with `pycos <https://pycos.org>`_, an independent framework for asynchronous, concurrent, distributed, network programming with tasks (without threads). pycos uses non-blocking sockets with I/O notification mechanisms epoll, kqueue and poll, and Windows I/O Completion Ports (IOCP) for high performance and scalability, so dispy works efficiently with a single node or large cluster(s) of nodes. pycos itself has support for distributed/parallel computing, including transferring computations, files etc., and message passing (for communicating with client and other computation tasks). While dispy can be used to schedule jobs of a computation to get the results, pycos can be used to create `distributed communicating processes <https://pycos.org/dispycos.html>`_, for broad range of use cases. * Computations (Python functions or standalone programs) and their dependencies (files, Python functions, classes, modules) are distributed automatically. * Computation nodes can be anywhere on the network (local or remote). For security, either simple hash based authentication or SSL encryption can be used. * After each execution is finished, the results of execution, output, errors and exception trace are made available for further processing. * Nodes may become available dynamically: dispy will schedule jobs whenever a node is available and computations can use that node. * If callback function is provided, dispy executes that function when a job is finished; this can be used for processing job results as they become available. * Client-side and server-side fault recovery are supported: If user program (client) terminates unexpectedly (e.g., due to uncaught exception), the nodes continue to execute scheduled jobs. If client-side fault recover option is used when creating a cluster, the results of the scheduled (but unfinished at the time of crash) jobs for that cluster can be retrieved later. If a computation is marked reentrant when a cluster is created and a node (server) executing jobs for that computation fails, dispy automatically resubmits those jobs to other available nodes. * dispy can be used in a single process to use all the nodes exclusively (with ``JobCluster`` - simpler to use) or in multiple processes simultaneously sharing the nodes (with ``SharedJobCluster`` and *dispyscheduler* program). * Cluster can be `monitored and managed <https:/dispy.org/httpd.html>`_ with web browser. Dependencies ------------ dispy requires pycos_ for concurrent, asynchronous network programming with tasks. pycos is automatically installed if dispy is installed with pip. Under Windows efficient polling notifier I/O Completion Ports (IOCP) is supported only if `pywin32 <https://github.com/mhammond/pywin32>`_ is installed; otherwise, inefficient *select* notifier is used. Installation ------------ To install dispy, run:: python -m pip install dispy Release Notes ------------- Short summary of changes for each release can be found at `News <https://pycos.com/forum/viewforum.php?f=11>`_. Detailed logs / changes are at github `commits <https://github.com/pgiri/dispy/commits/master>`_. Authors ------- * Giridhar Pemmasani Links ----- * Documentation is at `dispy.org`_. * `Examples <https://dispy.org/examples.html>`_. * `Github (Code Respository) <https://github.com/pgiri/dispy>`_.


نحوه نصب


نصب پکیج whl dispy-4.9.1:

    pip install dispy-4.9.1.whl


نصب پکیج tar.gz dispy-4.9.1:

    pip install dispy-4.9.1.tar.gz