معرفی شرکت ها


discern-reconstruction-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Wasserstein Auto-Encoder for expression reconstruction
ویژگی مقدار
سیستم عامل -
نام فایل discern-reconstruction-0.1.1
نام discern-reconstruction
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Fabian Hausmann
ایمیل نویسنده fabian.hausmann@zmnh.uni-hamburg.de
آدرس صفحه اصلی https://discern.readthedocs.io/en/latest/quickinfo.html
آدرس اینترنتی https://pypi.org/project/discern-reconstruction/
مجوز MIT
.. image:: https://github.com/imsb-uke/discern/actions/workflows/test.yml/badge.svg :target: https://github.com/imsb-uke/discern/actions/workflows/test.yml :alt: pipeline status .. image:: https://readthedocs.org/projects/discern/badge/?version=latest :target: https://discern.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://github.com/imsb-uke/discern/actions/workflows/dockerimage.yml/badge.svg :target: https://github.com/imsb-uke/discern/actions/workflows/dockerimage.yml :alt: Docker build status DISCERN ======= DISCERN is a deep learning approach to reconstruction expression information of single-cell RNAseq data sets using a high quality reference. Getting Started --------------- These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. An interactive tutorial can be found in `Tutorial.ipynb <https://github.com/imsb-uke/discern/blob/main/Tutorial.ipynb>`_. Prerequisites ^^^^^^^^^^^^^ We use `poetry <https://python-poetry.org/>`_ for dependency management. You can get poetry by .. code-block:: sh pip install poetry or (the officially recommended way) .. code-block:: sh curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python Installing ^^^^^^^^^^ To get discern you can clone the repository by .. code-block:: sh git clone https://github.com/imsb-uke/discern.git poetry can be used to install all further dependencies in an virtual environment. .. code-block:: sh cd discern poetry install --no-dev To finally run discern you can also directly use poetry with .. code-block:: sh poetry run commands or spawn a new shell in the virtual environment .. code-block:: sh poetry shell For further examples the first approach is presented. Using discern ^^^^^^^^^^^^^ You can use the main function of discern for most use cases. Usually you have to preprocess your data by: .. code-block:: sh poetry run discern process <parameters.json> An example parameters.json is provided together with an hyperparameter_search.json for hyperparameter optimization using ray[tune]. The training can be done with .. code-block:: sh poetry run discern train <parameters.json> Hyperparameter optimization needs a ray server with can be started with .. code-block:: sh poetry run ray start --head --port 57780 --redis-password='password' and can started with .. code-block:: sh poetry run discern optimize <parameters.json> For projection 2 different modes are available: Eval mode, which is a more general approach and can save a lot of files: .. code-block:: sh poetry run discern project --all_batches <parameters.json> Or projection mode which offers a more fine grained controll to which is projected. .. code-block:: sh poetry run discern project --metadata="metadatacolumn:value" --metadata="metadatacolumn:" <parameters.json> which creates to files, one is projected to the average batch calculated by a ``metadatacolumn`` and a contained ``value``. The second file is projected to the the average for each value in "metadatacolumn"; individually. DISCERN also supports online training. You can add new batches to your dataset after the usual ``train`` with: .. code-block:: sh poetry run discern onlinetraining --freeze --filename=<new_not_preprocessed_batch[es].h5ad> <parameters.json> The data gets automatically preprocessed and added to the dataset. You can run ``project`` afterwards as usual (without the ``--filename`` flag). ``--freeze`` is important to freeze non-conditional layers in training. Testing ^^^^^^^ For critical parts of the model several tests has been implemented. They can be run with: .. code-block:: sh poetry run pytest --cov=discern --cov-report=term (Requires the development version of discern). Some tests are slow and don't run by default, but you can run them using: .. code-block:: sh poetry run pytest --runslow --cov=discern --cov-report=term Coding style ^^^^^^^^^^^^ To enforce code style guidlines `pylint <https://www.pylint.org/>`_ and `mypy <http://mypy-lang.org/>`_ are use. Example commands are shown below: .. code-block:: sh poetry run pylint discern ray_hyperpara.py poetry run mypy discern ray_hyperpara.py For automatic code formatting `yapf <https://github.com/google/yapf>`_ was used: .. code-block:: sh yapf -i <filename.py> These tools are included in the dev-dependencies. Authors ------- * Can Ergen * Pierre Machart * Fabian Hausmann


نیازمندی

مقدار نام
>=1.6.0,<1.7.0 ray[tune,default]
>=0.2.3,<0.3.0 hyperopt
>=1.6.0,<2.0.0 scanpy
==2.1.0 tensorflow
>=0.7.1,<0.8.0 tensorflow-addons
>=0.29.16,<0.30.0 Cython
>=0.23.1,<0.24.0 scikit-learn
<0.35.0 llvmlite
>=5.5.0,<6.0.0) ipykernel
>=1.0.1,<2.0.0 joblib
>=7.1.2,<8.0.0 click
>=4.1.1,<5.0.0) Sphinx
>=0.5.2,<0.6.0) sphinx-rtd-theme
>=0.10.2,<0.11.0) toml


زبان مورد نیاز

مقدار نام
>=3.6.9,<4.0.0 Python


نحوه نصب


نصب پکیج whl discern-reconstruction-0.1.1:

    pip install discern-reconstruction-0.1.1.whl


نصب پکیج tar.gz discern-reconstruction-0.1.1:

    pip install discern-reconstruction-0.1.1.tar.gz