معرفی شرکت ها


discco-0.2.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Quantification of membrane and cytoplasmic concentrations based on differentiable simulation of cell cortex images
ویژگی مقدار
سیستم عامل -
نام فایل discco-0.2.4
نام discco
نسخه کتابخانه 0.2.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Tom Bland
ایمیل نویسنده tom_bland@hotmail.co.uk
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/discco/
مجوز CC BY 4.0
# DISCCo: Differentiable Image Simulation of the Cell Cortex [![CC BY 4.0][cc-by-shield]][cc-by] [![PyPi version](https://badgen.net/pypi/v/discco/)](https://pypi.org/project/discco) Quantification of membrane and cytoplasmic concentrations based on differentiable simulation of cell cortex images. Designed for use on images of PAR proteins in C. elegans zygotes. This extends on the segmentation and straightening algorithm described [here](https://github.com/tsmbland/par-segmentation), and uses straightened cortices obtained by that method as input. ## Methods Our method is adapted from previous methods that model cross-cortex intensity profiles at each position around the cortex as the sum of distinct cytoplasmic and membrane signal components (Gross et al., 2018; Reich et al., 2019). Typically, these two components are modelled as an error function and Gaussian function respectively, representing the expected shape of a step and a point convolved by a Gaussian point spread function (PSF) in one dimension. In our model we relax these assumptions to account for the possibility of a non-Gaussian PSF and complex light-scattering behaviours which cannot be captured with these simplistic descriptions. Instead, cytoplasmic and membrane signal profiles are modelled as arbitrary vectors of length 50 pixels which can take on any shape (s<sub>mem</sub> and s<sub>cyt</sub>). Full straightened images can then be simulated as the addition of two tensor products: sim = c<sub>cyt</sub> ⊗ s<sub>cyt</sub> + c<sub>mem</sub> ⊗ s<sub>mem</sub> where c<sub>cyt</sub> and c<sub>mem</sub> are cytoplasmic and membrane concentration profiles. Building the model using the differentiable programming language JAX allows input parameters to be iteratively adjusted by backpropagation to minimise the mean squared error between simulated images and ground truth images: <p align="center"> <img src="https://raw.githubusercontent.com/tsmbland/discco/master/docs/schematic.png" width="100%" height="100%"/> </p> In doing so, both the image-specific concentration parameters and the underlying quantification model (i.e. s<sub>mem</sub> and s<sub>cyt</sub>) can be optimised, allowing for closer simulations and more accurate quantification: <p align="center"> <img src="https://raw.githubusercontent.com/tsmbland/discco/master/docs/simulation comparison.png" width="100%" height="100%"/> </p> For full details of the model and training procedures, see PAPER IN PREP And the accompanying GitHub repository: IN PREP ## Installation pip install discco ## License This work is licensed under a [Creative Commons Attribution 4.0 International License][cc-by]. [![CC BY 4.0][cc-by-image]][cc-by] [cc-by]: http://creativecommons.org/licenses/by/4.0/ [cc-by-image]: https://i.creativecommons.org/l/by/4.0/88x31.png [cc-by-shield]: https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey.svg


نحوه نصب


نصب پکیج whl discco-0.2.4:

    pip install discco-0.2.4.whl


نصب پکیج tar.gz discco-0.2.4:

    pip install discco-0.2.4.tar.gz