معرفی شرکت ها


directsearch-1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A derivative-free solver for unconstrained minimization
ویژگی مقدار
سیستم عامل -
نام فایل directsearch-1.0
نام directsearch
نسخه کتابخانه 1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lindon Roberts
ایمیل نویسنده lindon.roberts@anu.edu.au
آدرس صفحه اصلی https://github.com/lindonroberts/directsearch
آدرس اینترنتی https://pypi.org/project/directsearch/
مجوز GNU GPL
============================================================== directsearch: derivative-free optimization using direct search ============================================================== .. image:: https://github.com/lindonroberts/directsearch/actions/workflows/unit_tests.yml/badge.svg :target: https://github.com/lindonroberts/directsearch/actions :alt: Build Status .. image:: https://img.shields.io/badge/License-GPL%20v3-blue.svg :target: https://www.gnu.org/licenses/gpl-3.0 :alt: GNU GPL v3 License ``directsearch`` is a package for solving unconstrained minimization, without requiring derivatives of the objective. It is particularly useful when evaluations of the objective function are expensive and/or noisy. It implements a family of direct search methods. For general references on these methods, please consult: 1. A R Conn, K Scheinberg, and L N Vicente. *Introduction to derivative-free optimization*. SIAM, 2009. 2. C Audet, and W. Hare. Derivative-Free and Blackbox Optimization. Springer, 2017. 3. T G Kolda, R M Lewis, and V Torczon. Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods. *SIAM Review*, 45(3), 2003, 385-482. This package extends general direct search methods to use randomized methods for improved practical performance and scalability. Citation -------- If you use this package, please cite: L Roberts, and C W Royer. Direct search based on probabilistic descent in reduced spaces, *In preparation*, (2022). Installation ------------ Please install using pip: .. code-block:: bash $ pip install [--user] directsearch To instead install from source run: .. code-block:: bash $ git clone git@github.com:lindonroberts/directsearch.git $ cd directsearch $ pip install -e . The ``-e`` option to pip allows you to modify the source code and for your Python installation to recognize this. Usage ----- This package can solve unconstrained nonlinear optimization problems of the form: ``min_{x in R^n} f(x)``. The simplest usage of ``directsearch`` is .. code-block:: python soln = directsearch.solve(f, x0) where * ``f`` is a callable objective function, taking in a ``numpy.ndarray`` the same shape as ``x0`` and returing a single ``float``. * ``x0`` is a one-dimensional ``numpy.ndarray`` (i.e. ``len(x0.shape)==1``), the starting point for the algorithm. It should be the best available guess of the minimizer. The output is an object with fields: * ``soln.x``: the approximate minimizer, the best ``x`` value found (a ``numpy.ndarray`` the same shape as ``x0``). * ``soln.f``: the minimum value equal to ``f(soln.x)``. * ``soln.nf``: the number of evaluations of ``f`` required by the solve routine. * ``soln.flag``: an integer indicating the reason for termination. * ``soln.msg``: a string with a human-readable termination message. The possible values of ``soln.flag`` are: * ``soln.EXIT_MAXFUN_REACHED``: termination on maximum number of objective evaluations. * ``soln.EXIT_ALPHA_MIN_REACHED``: termination on small step size (success). You can print information about the solution using ``print(soln)``. The ``examples`` directory has several scripts showing the usage of ``directsearch``. **Interfaces to solver instances** There are many configurable options for the solver in `directsearch` and several ways to call specific direct search algorithm implementations. The full set of available functions is: * ``directsearch.solve()`` applies a direct-search method to a given optimization problem. It is the most flexible available routine. * ``directsearch.solve_directsearch()`` applies regular direct-search techniques without sketching [1,2,3]. * ``directsearch.solve_probabilistic_directsearch()`` applies direct search based on probabilistic descent without sketching [4]. * ``directsearch.solve_subspace_directsearch()`` applies direct-search schemes based on polling directions in random subspaces [5]. * ``directsearch.solve_stp()`` applies the stochastic three points method, a particular direct-search technique [6]. **Optional parameters and more information** See ``usage.txt`` for full details on how to call these functions. The most commonly used optional inputs (to all functions) are: * ``maxevals``: the maximum number of allowed evaluations of ``f`` during the solve. * ``verbose``: a ``bool`` for whether or not to print progress information. * ``print_freq``: an ``int`` indicating how frequently to print progress information (1 is at every iteration). **Choosing a solver instance** As a rule of thumb, if ``len(x0)`` is not too large (e.g. less than 50), then ``solve_directsearch()`` or ``solve_probabilistic_directsearch()`` are suitable choices. Of these, generally ``solve_probabilistic_directsearch()`` will solve with fewer evaluations of ``f``, but ``solve_directsearch()`` is a deterministic algorithm. If ``len(x0)`` is larger, then ``directsearch.solve_subspace_directsearch()`` may be a better option. Note that ``solve_directsearch()`` is the only deterministic algorithm (i.e. reproducible without setting the numpy random seed). **References** 1. A R Conn, K Scheinberg, and L N Vicente. *Introduction to derivative-free optimization*. SIAM, 2009. 2. C Audet, and W. Hare. Derivative-Free and Blackbox Optimization. Springer, 2017. 3. T G Kolda, R M Lewis, and V Torczon. Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods. *SIAM Review*, 45(3), 2003, 385-482. 4. S Gratton, C W Royer, L N Vicente, and Z Zhang. Direct Search Based on Probabilistic Descent. *SIAM J. Optimization*, 25(3), 2015, 1515-1541. 5. L Roberts, and C W Royer. Direct search based on probabilistic descent in reduced spaces, *In preparation*, (2022). 6. E H Bergou, E Gorbunov, and P Richtarik. Stochastic Three Points Method for Unconstrained Smooth Minimization. *SIAM J. Optimization*, 30(4), 2020, 2726-2749. Bugs ---- Please report any bugs using GitHub's issue tracker. License ------- This algorithm is released under the GNU GPL license.


نحوه نصب


نصب پکیج whl directsearch-1.0:

    pip install directsearch-1.0.whl


نصب پکیج tar.gz directsearch-1.0:

    pip install directsearch-1.0.tar.gz