معرفی شرکت ها


diptest-0.5.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Hartigan's diptest.
ویژگی مقدار
سیستم عامل -
نام فایل diptest-0.5.2
نام diptest
نسخه کتابخانه 0.5.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ralph Urlus
ایمیل نویسنده rurlus.dev@gmail.com
آدرس صفحه اصلی https://github.com/RUrlus/diptest
آدرس اینترنتی https://pypi.org/project/diptest/
مجوز GPLv2+
# diptest [![Linux Build](https://github.com/RUrlus/diptest/actions/workflows/linux.yml/badge.svg)](https://github.com/RUrlus/diptest/actions/workflows/linux.yml) [![Windows Build](https://github.com/RUrlus/diptest/actions/workflows/windows.yml/badge.svg)](https://github.com/RUrlus/diptest/actions/workflows/windows.yml) [![MacOS build](https://github.com/RUrlus/diptest/actions/workflows/macos.yml/badge.svg)](https://github.com/RUrlus/diptest/actions/workflows/macos.yml) [![PyPi](http://img.shields.io/pypi/v/diptest.svg)](https://pypi.org/project/diptest/) A Python/C(++) implementation of Hartigan & Hartigan's dip test for unimodality. The dip test measures multimodality in a sample by the maximum difference, over all sample points, between the empirical distribution function, and the unimodal distribution function that minimizes that maximum difference. Other than unimodality, it makes no further assumptions about the form of the null distribution. ## Dependencies * `numpy` * [Optional] `OpenMP` Parallelisation of the p-value computation using bootstrapping is offered using OpenMP. OpenMP is disabled by default but can be enabled, see installation section below. Multi-threading can be turned off by setting the number of threads equal to 1. See the docstring of `diptest` for details. ## Installation diptest can be installed from PyPi using: ```bash pip install diptest ``` Wheels containing the pre-compiled extension are available for: - Windows x84-64 - CPython 3.7 - 3.10 - Linux x84-64 - CPython 3.7 - 3.10 - MacOS x84-64 - CPython 3.7 - 3.10 - MacOS ARM-64 - CPython 3.8 - 3.10 If you have a C/C++ compiler available it is advised to install without the wheel as this enables architecture specific optimisations. ```bash pip install diptest --no-binary diptest ``` Compatible compilers through Pybind11: - Clang/LLVM 3.3 or newer (for Apple Xcode's clang, this is 5.0.0 or newer) - GCC 4.8 or newer - Microsoft Visual Studio 2015 Update 3 or newer - Intel classic C++ compiler 18 or newer (ICC 20.2 tested in CI) - Cygwin/GCC (previously tested on 2.5.1) - NVCC (CUDA 11.0 tested in CI) - NVIDIA PGI (20.9 tested in CI) #### Enable OpenMP To enable OpenMP use: ```bash CMAKE_ARGS="-DDIPTEST_ENABLE_OPENMP=ON" pip install diptest --no-binary diptest ``` #### Debug installation To enable a debug build use: ```bash CMAKE_ARGS="-DCMAKE_BUILD_TYPE=Debug" pip install diptest --no-binary diptest ``` #### Debug printing To enable the debug print statements use: ```bash CMAKE_ARGS="-DDIPTEST_ENABLE_DEBUG=ON" pip install diptest --no-binary diptest ``` then call the function with debug argument set to a value greater than zero: ```python3 diptest(x, debug=1) ``` ## Usage This library provides two functions: * `dipstat` * `diptest` The first only computes Hartigan's dip statistic. `diptest` computes both the statistic and the p-value. The p-value can be computed using interpolation of a critical value table (default) or by bootstrapping the null hypothesis. Note that for larger samples (N > 1e5) this is quite compute and memory intensive. ```python3 import numpy as np import diptest # generate some bimodal random draws N = 1000 hN = N // 2 x = np.empty(N, dtype=np.float64) x[:hN] = np.random.normal(0.4, 1.0, hN) x[hN:] = np.random.normal(-0.4, 1.0, hN) # only the dip statistic dip = diptest.dipstat(x) # both the dip statistic and p-value dip, pval = diptest.diptest(x) ``` ## References Hartigan, J. A., & Hartigan, P. M. (1985). The Dip Test of Unimodality. The Annals of Statistics. Hartigan, P. M. (1985). Computation of the Dip Statistic to Test for Unimodality. Journal of the Royal Statistical Society. Series C (Applied Statistics), 34(3), 320-325. ## Acknowledgement `diptest` is just a Python port of [Martin Maechler's R module of the same name](http://cran.r-project.org/web/packages/diptest/index.html). The package wrapping the C implementation was originally written by [Alistair Muldal](https://github.com/alimuldal/diptest). The fork is an update with a number of changes: * Fixes a buffer overrun issue in `_dip.c` by reverting to the original C implementation * Python bindings using Pybind11 (C++) instead of Cython * P-value computation using bootstrapping has been moved down to C++ with optional parallelisation support through OpenMP * Removed overhead caused by debug branching statements by placing them under a compile-time definition * Added tests and wheel support * C implementation of diptest was rewritten in C++ by [Prodromos Kolyvakis](https://github.com/prokolyvakis) ## License `diptest` is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.


نیازمندی

مقدار نام
- psutil
>=1.18 numpy
- pytest
- pytest


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl diptest-0.5.2:

    pip install diptest-0.5.2.whl


نصب پکیج tar.gz diptest-0.5.2:

    pip install diptest-0.5.2.tar.gz