معرفی شرکت ها


diplib-3.4.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python bindings for DIPlib, the quantitative image analysis library
ویژگی مقدار
سیستم عامل -
نام فایل diplib-3.4.0
نام diplib
نسخه کتابخانه 3.4.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Cris Luengo and others
ایمیل نویسنده luengo@ieee.org
آدرس صفحه اصلی https://github.com/DIPlib/diplib
آدرس اینترنتی https://pypi.org/project/diplib/
مجوز Apache
# Python bindings to DIPlib 3 (a.k.a. PyDIP) [![Build Status](https://github.com/DIPlib/diplib/actions/workflows/cmake.yml/badge.svg)](https://github.com/DIPlib/diplib/actions) [![Language grade: C/C++](https://img.shields.io/lgtm/grade/cpp/g/DIPlib/diplib.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/DIPlib/diplib/context:cpp) ## Introduction The purpose of the *DIPlib* project is to provide a one-stop library and development environment for quantitative image analysis, be it applied to microscopy, radiology, astronomy, or anything in between. As opposed to all other image processing/analysis libraries and packages out there, *DIPlib* focuses on quantification. The first priority is precision, all other principles have a lower priority. Our principles are: 1. **Precision:** We implement the most precise known methods, and output often defaults to floating-point samples. The purpose of these algorithms is quantification, not approximation. 2. **Ease of use** Although our Python bindings are not much more than a thin wrapper of the C++ library functionality, the image analysis functionality is always easy to use. For example, the user does not, in general, need to be aware of the data type of the image to use these algorithms effectively. 3. **Efficiency** We implement the most efficient known algorithms, as long as they don't compromise precision. Ease-of-use features might also incur a slight overhead in execution times. The library can be used in high-throughput quantitative analysis pipelines, but is not designed for real-time video processing. Besides an extensive collection of image processing and analysis algorithms, this package contains *DIPviewer*, an interactive multi-dimensional image viewer, and *DIPjavaio*, an interface to the [*OME Bio-Formats*](https://www.openmicroscopy.org/bio-formats/) library. The package is compatible with *NumPy* and any image processing package that uses a *NumPy*-compatible way of representing images. See [the *DIPlib* website](https://diplib.org/) for more information. **NOTE!** We consider the Python bindings (*PyDIP*) to be in development. We aim at not making breaking changes, but will sometimes do so when we feel it significantly improves the usability of the module. These changes will always be highlighted in the change logs and the release notification on the *DIPlib* website. We recommend that you pin your project to use a specific version of the package on PyPI, and carefully read the change logs before upgrading. ## Installation To install, simply type pip install diplib Windows users might need to install the [Microsoft Visual C++ Redistributable for Visual Studio 2015, 2017 and 2019](https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads). To read images through the *Bio-Formats* library, you will need to download it separately: python -m diplib download_bioformats ## Usage The interface only has automatically generated docstrings that show the names of each of the parameters. Use the *DIPlib* reference to learn how to use each function. Get started by reading [the User Manual](https://diplib.org/diplib-docs/pydip_user_manual.html). These Jupyter notebooks give a short introduction: - [01_pydip_basics.ipynb](https://github.com/DIPlib/diplib/blob/master/examples/python/01_pydip_basics.ipynb) - [02_filtering.ipynb](https://github.com/DIPlib/diplib/blob/master/examples/python/02_filtering.ipynb) - [03_numpy_interaction.ipynb](https://github.com/DIPlib/diplib/blob/master/examples/python/03_numpy_interaction.ipynb) - [04_tensor_images.ipynb](https://github.com/DIPlib/diplib/blob/master/examples/python/04_tensor_images.ipynb) ## License Copyright 2014-2022 Cris Luengo and contributors Copyright 1995-2014 Delft University of Technology Licensed under the Apache License, Version 2.0 (the "License"); you may not use this library except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 (or see the [`LICENSE.txt`](LICENSE.txt) file in this distribution) Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl diplib-3.4.0:

    pip install diplib-3.4.0.whl


نصب پکیج tar.gz diplib-3.4.0:

    pip install diplib-3.4.0.tar.gz