معرفی شرکت ها


digital-eval-1.5.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Evaluate Mass Digitalization Data
ویژگی مقدار
سیستم عامل -
نام فایل digital-eval-1.5.1
نام digital-eval
نسخه کتابخانه 1.5.1
نگهدارنده ['Uwe Hartwig']
ایمیل نگهدارنده ['uwe.hartwig@bibliothek.uni-halle.de']
نویسنده Universitäts- und Landesbibliothek Sachsen-Anhalt
ایمیل نویسنده development@bibliothek.uni-halle.de
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/digital-eval/
مجوز -
# digital eval ![example workflow](https://github.com/ulb-sachsen-anhalt/digital-eval/actions/workflows/python-app.yml/badge.svg) Python3 Tool to report evaluation outcomes from mass digitalization workflows. ## Features * match automatically groundtruth (i.e. reference data) and candidates by filename * use geometric information to evaluate only specific frame (i.e. specific column or region from large page) of candidates (requires ALTO or PAGE format) * aggregate evaluation outcome on domain range (with multiple subdomains) * choose from textual metrics based on characters or words plus common Information Retrieval * choose between accuracy / error rate and different UTF-8 Python norms * formats: ALTO, PAGE or plain text for both groundtruth and candidates * speedup with parallel execution * additional OCR util: * filter custom areas of single OCR files ## Installation ```bash pip install digital-eval ``` ## Usage ### Metrics Calculate similarity (`acc`) or difference (`err`) ratios between single reference/groundtruth and test/candidate item. #### Edit-Distance based Character-based text string minus whitechars (`Cs`, `Characters`) or Letter-based (`Ls`, `Letters`) minus whites, punctuation and digits. Word/Token-based edit-distance of single tokens identified by whitespaces. #### Set based Calculate union of sets of tokens/words (`BoW`, `BagOfWords`). Operate on sets of tokens/words with respect to language specific stopwords using [nltk](https://www.nltk.org/) -framework for: * Precision (`IRPre`, `Pre`, `Precision`): How many tokens from candidate are in groundtruth reference? * Recall (`IRRec`, `Rec`, `Recall`): How many tokens from groundtruth reference should candidate include? * F-Measure (`IRFMeasure`, `FM`): weighted ratio Precision / Recall ### UTF-8 Normalisations Use standard Python Implementation of UTF-8 normalizations; default: `NFKD`. ### Statistics Statistics calculated via [numpy](https://numpy.org/) include arithmetic mean, median and outlier detection with interquartile range and are based on the specific groundtruth/reference (ref) for each metric, i.e. char, letters or tokens. ### Evaluate treelike structures To evaluate OCR-candidate-data batch-like versus existing Groundtruth, please make sure that your structures fit this way: ```bash groundtruth root/ ├── <domain>/ │ └── <subdomain>/ │ └── <page-01>.gt.xml candidate root/ ├── <domain>/ │ └── <subdomain>/ │ └── <page-01>.xml ``` Now call via: ```bash digital-eval <path-candidate-root>/domain/ -ref <path-groundtruth>/domain/ ``` for an aggregated overview on stdout. Feel free to increase verbosity via `-v` (or even `-vv`) to get detailed information about each single data set which was evaluated. Structured OCR is considered to contain valid geometrical and textual data on word level, even though for recent PAGE also line level is possible. ### Data problems Inconsistent OCR Groundtruth with empty texts (ALTO String elements missing CONTENT or PAGE without TextEquiv) or invalid geometrical coordinates (less than 3 points or even empty) will lead to evaluation errors if geometry must be respected. ## Additional OCR Utils ### Filter Area You can filter a custom area of a page of an OCR file by providing the points of an arbitrary shape. The format of the `-p, --points` argument is `<pt_1_x>,<pt_1_y> <pt_2_x>,<pt_2_y> <pt_3_x>,<pt_3_y> ... <pt_n_x>,<pt_n_y>` . For simple rectangular areas this can be expressed also with two points, with first point as top left and second point as bottom right: `<pt_top_left_x>,<pt_top_left_y> <pt_bottom_right_x>,<pt_bottom_right_y>`. The following example filters a rectangular area of 600x400 pixels of a page, which is described by an input ALTO file and saves the result to an output ALTO file ```bash ocr-util frame -i page_1.alto.xml -p "0,0 600,0 600,400 0,400" -o page_1_area.alto.xml ``` Short version with top left and bottom right: ```bash ocr-util frame -i page_1.alto.xml -p "0,0 600,400" -o page_1_area.alto.xml ``` ## Development Plattform: Intel(R) Core(TM) i5-6500 CPU@3.20GHz, 16GB RAM, Ubuntu 20.04 LTS, Python 3.8. ```bash # clone local git clone <repository-url> <local-dir> cd <local-dir> # enable virtual python environment (linux) # and install libraries python3 -m venv venv . venv/bin/activate python -m pip install -U pip python -m pip install -r requirements.txt # install pip install . # optional: # install additional development dependencies pip install -r tests/test_requirements.txt pytest -v # run digital-eval --help ``` ## Contribute Contributions, suggestions and proposals welcome! ## Licence Under terms of the [MIT license](https://opensource.org/licenses/MIT). **NOTE**: This software depends on other packages that _may_ be licensed under different open source licenses.


نیازمندی

مقدار نام
<3 rapidfuzz
- numpy
- nltk
- shapely


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl digital-eval-1.5.1:

    pip install digital-eval-1.5.1.whl


نصب پکیج tar.gz digital-eval-1.5.1:

    pip install digital-eval-1.5.1.tar.gz