معرفی شرکت ها


diffwave-0.1.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

diffwave
ویژگی مقدار
سیستم عامل -
نام فایل diffwave-0.1.7
نام diffwave
نسخه کتابخانه 0.1.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده LMNT, Inc.
ایمیل نویسنده github@lmnt.com
آدرس صفحه اصلی https://www.lmnt.com
آدرس اینترنتی https://pypi.org/project/diffwave/
مجوز Apache 2.0
# DiffWave ![PyPI Release](https://img.shields.io/pypi/v/diffwave?label=release) [![License](https://img.shields.io/github/license/lmnt-com/diffwave)](https://github.com/lmnt-com/diffwave/blob/master/LICENSE) DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via iterative refinement. The speech can be controlled by providing a conditioning signal (e.g. log-scaled Mel spectrogram). The model and architecture details are described in [DiffWave: A Versatile Diffusion Model for Audio Synthesis](https://arxiv.org/pdf/2009.09761.pdf). ## What's new (2021-04-01) - fast sampling algorithm based on v3 of the DiffWave paper ## What's new (2020-10-14) - new pretrained model trained for 1M steps - updated audio samples with output from new model ## Status (2021-04-01) - [x] fast inference procedure - [x] stable training - [x] high-quality synthesis - [x] mixed-precision training - [x] multi-GPU training - [x] command-line inference - [x] programmatic inference API - [x] PyPI package - [x] audio samples - [x] pretrained models - [ ] unconditional waveform synthesis Big thanks to [Zhifeng Kong](https://github.com/FengNiMa) (lead author of DiffWave) for pointers and bug fixes. ## Audio samples [22.05 kHz audio samples](https://lmnt.com/assets/diffwave) ## Pretrained models [22.05 kHz pretrained model](https://lmnt.com/assets/diffwave/diffwave-ljspeech-22kHz-1000578.pt) (31 MB, SHA256: `d415d2117bb0bba3999afabdd67ed11d9e43400af26193a451d112e2560821a8`) This pre-trained model is able to synthesize speech with a real-time factor of 0.87 (smaller is faster). ### Pre-trained model details - trained on 4x 1080Ti - default parameters - single precision floating point (FP32) - trained on LJSpeech dataset excluding LJ001* and LJ002* - trained for 1000578 steps (1273 epochs) ## Install Install using pip: ``` pip install diffwave ``` or from GitHub: ``` git clone https://github.com/lmnt-com/diffwave.git cd diffwave pip install . ``` ### Training Before you start training, you'll need to prepare a training dataset. The dataset can have any directory structure as long as the contained .wav files are 16-bit mono (e.g. [LJSpeech](https://keithito.com/LJ-Speech-Dataset/), [VCTK](https://pytorch.org/audio/_modules/torchaudio/datasets/vctk.html)). By default, this implementation assumes a sample rate of 22.05 kHz. If you need to change this value, edit [params.py](https://github.com/lmnt-com/diffwave/blob/master/src/diffwave/params.py). ``` python -m diffwave.preprocess /path/to/dir/containing/wavs python -m diffwave /path/to/model/dir /path/to/dir/containing/wavs # in another shell to monitor training progress: tensorboard --logdir /path/to/model/dir --bind_all ``` You should expect to hear intelligible (but noisy) speech by ~8k steps (~1.5h on a 2080 Ti). #### Multi-GPU training By default, this implementation uses as many GPUs in parallel as returned by [`torch.cuda.device_count()`](https://pytorch.org/docs/stable/cuda.html#torch.cuda.device_count). You can specify which GPUs to use by setting the [`CUDA_DEVICES_AVAILABLE`](https://developer.nvidia.com/blog/cuda-pro-tip-control-gpu-visibility-cuda_visible_devices/) environment variable before running the training module. ### Inference API Basic usage: ```python from diffwave.inference import predict as diffwave_predict model_dir = '/path/to/model/dir' spectrogram = # get your hands on a spectrogram in [N,C,W] format audio, sample_rate = diffwave_predict(spectrogram, model_dir, fast_sampling=True) # audio is a GPU tensor in [N,T] format. ``` ### Inference CLI ``` python -m diffwave.inference --fast /path/to/model /path/to/spectrogram -o output.wav ``` ## References - [DiffWave: A Versatile Diffusion Model for Audio Synthesis](https://arxiv.org/pdf/2009.09761.pdf) - [Denoising Diffusion Probabilistic Models](https://arxiv.org/pdf/2006.11239.pdf) - [Code for Denoising Diffusion Probabilistic Models](https://github.com/hojonathanho/diffusion)


نحوه نصب


نصب پکیج whl diffwave-0.1.7:

    pip install diffwave-0.1.7.whl


نصب پکیج tar.gz diffwave-0.1.7:

    pip install diffwave-0.1.7.tar.gz