معرفی شرکت ها


diffqc-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Diiferentiable Quantum Simulator
ویژگی مقدار
سیستم عامل -
نام فایل diffqc-0.0.2
نام diffqc
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده H. Yamada
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/ymd-h/diffqc
آدرس اینترنتی https://pypi.org/project/diffqc/
مجوز -
# diffqc: Differentiable Quantum Circuit Simulator for Quantum Machine Learning ## 1. Overview > **Note** > This project started as diffq, but because of accidental name conflict, > we changed name to diffqc. diffqc is a python package providing differentiable quantum circuit simulator. The main target is quantum machine learning. diffqc is built on [JAX](https://jax.readthedocs.io/en/latest/), so that it is * GPU friendly, * easily vectorized, * differentiable, but * supported environments are limited. (Ref. ["Installation" section at JAX README](https://github.com/google/jax#installation)) ## 2. Features diffqc provides 2 types of operations, `dense` and `sparse`. Both have same operations and only internal representations are different. ### 2.1 `dense` operation In `dense` operation, complex coefficients of all possible `2**nqubits` states are traced. This is simple matrix calculation but requires exponentially large memory when `nqubits` is large. ### 2.2 `sparse` operation > **Warning** > `sparse` module is under depelopment, and is not ready to use. In `sparse` operation, only neccessary states are traced. This might reduce memory requirements at large `nqubits` system, but it can be computationally inefficient. ### 2.3 Builtin Algorithm `lib` Builtin algorithms are implemented at `diffqc.lib`. To support both `dense` and `sparse` operation, operation module is passed to 1st argument. * `GHZ(op, c: jnp.ndarray, wires: Tuple[int])` * Create Greenberger-Horne-Zeilinger state [2] * `|00...0>` -> `(|00...0> + |11...1>)/sqrt(2)` * `QFT(op, c: jnp.ndarray, wires: Tuple[int])` * Quantum Fourier Transform (without last swap) [3] * `QPE(op, c: jnp.ndarray, wires: Tuple[int], U: jnp.ndarray, aux: Tuple[int])` * Quantum Phase Estimation [4] * `wires`: Eigen Vector * `U`: Unitary Matrix * `aux`: Auxiliary qubits. These should be `|00...0>`. ### 2.4 PennyLane Plugin > **Warning** > PennyLane plugin is planned, but is still under development, and is not ready yet. [PennyLane](https://pennylane.ai/) is a quantum machine learning framework. By using PennyLane, we can choose machine learning framework (e.g. [TensorFlow](https://www.tensorflow.org/), [PyTorch](https://pytorch.org/)) and real/simulation quantum device independently, and can switch relatively easy. ## 3. Example Usage - example/00-circuit-basics.py - Basic Usage of diffqc - example/01-qcl-flax.py - QCL[1] Classification of [Iris](https://scikit-learn.org/stable/datasets/toy_dataset.html#iris-dataset) with [Flax](https://flax.readthedocs.io/en/latest/index.html) - example/02-cnn-like-qcl-flax.py - CNN-like QCL[1] Classification of [Digits](https://scikit-learn.org/stable/datasets/toy_dataset.html#digits-dataset) with [Flax](https://flax.readthedocs.io/en/latest/index.html) - example/03-pennylane.py - PennyLane Plugin - example/04-builtin-variational-cercuit-centric.py - Builtin Variational Circuit: Circuit Centric Block described at [5] - According to [6], this is one of the best circuit. - example/05-builtin-variational-josephson-sampler.py - Builtin Variational Circuit: Josephson Sampler described at [7] - According to [6], this is one of the best circuit. ## 4. References - JAX - [Official Site](https://jax.readthedocs.io/en/latest/) - [Repository at GitHub](https://github.com/google/jax) - PennyLane - [Official Site](https://pennylane.ai/) - [Repository at GitHub](https://github.com/PennyLaneAI/pennylane) - TensorFlow - [Official Site](https://www.tensorflow.org/) - [Repository at GitHub](https://github.com/tensorflow/tensorflow) - PyTorch - [Official Site](https://pytorch.org/) - [Repository at GitHub](https://github.com/pytorch/pytorch) - Flax - [Official Site](https://flax.readthedocs.io/en/latest/index.html) - [Repository at GitHub](https://github.com/google/flax) - [1] K. Mitarai et al. "Quantum Circuit Learning", Phys. Rev. A 98, 032309 (2018) - DOI: https://doi.org/10.1103/PhysRevA.98.032309 - arXiv: https://arxiv.org/abs/1803.00745 - [2] D. M. Greenberger et al., "Going Beyond Bell's Theorem", arXiv:0712.0921 - arXiv: https://arxiv.org/abs/0712.0921 - [3] D. Coppersmith, "An approximate Fourier transform useful in quantum factoring", IBM Research Report RC19642 - arXiv: https://arxiv.org/abs/quant-ph/0201067 - [4] A. Kitaev, "Quantum measurements and the Abelian Stabilizer Problem", arXiv:quant-ph/9511026 - arXiv: https://arxiv.org/abs/quant-ph/9511026 - [5] M. Schuld et al., "Circuit-centric quantum classifiers", Phys. Rev. A 101, 032308 (2020) - DOI: https://doi.org/10.1103/PhysRevA.101.032308 - arXiv: https://arxiv.org/abs/1804.00633 - [6] S. Sim et al., "Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms", Adv. Quantum Technol. 2 (2019) 1900070 - DOI: https://doi.org/10.1002/qute.201900070 - arXiv: https://arxiv.org/abs/1905.10876 - [7] M. R. Geller, "Sampling and scrambling on a chain of superconducting qubits", Phys. Rev. Applied 10, 024052 (2018) - DOI: https://doi.org/10.1103/PhysRevApplied.10.024052 - arXiv: https://arxiv.org/abs/1711.11026


نیازمندی

مقدار نام
- jax
- jaxlib
- flax
- optax
- scikit-learn
- tqdm
- pennylane
- coverage
- unittest-xml-reporting
- numpy


نحوه نصب


نصب پکیج whl diffqc-0.0.2:

    pip install diffqc-0.0.2.whl


نصب پکیج tar.gz diffqc-0.0.2:

    pip install diffqc-0.0.2.tar.gz