معرفی شرکت ها


differint-1.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Collection of algorithms for numerically calculating fractional derivatives.
ویژگی مقدار
سیستم عامل -
نام فایل differint-1.0.0
نام differint
نسخه کتابخانه 1.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Matthew Adams
ایمیل نویسنده Matthew.Adams@ucalgary.ca
آدرس صفحه اصلی http://github.com/differint/differint
آدرس اینترنتی https://pypi.org/project/differint/
مجوز MIT
## differint This package is used for numerically calculating fractional derivatives and integrals (differintegrals). Options for varying definitions of the differintegral are available, including the Grunwald-Letnikov (GL), the 'improved' Grunwald-Letnikov (GLI), the Riemann-Liouville (RL), and the Caputo (L1, L2, and L2C). Through the API, you can compute differintegrals at a point or over an array of function values. See below for an example of how to use this package, or check out the [wiki](https://github.com/differint/differint/wiki) for references, signatures, and examples for each function. ## Motivation There is little in the way of readily available, easy-to-use code for numerical fractional calculus. What is currently available are functions that are generally either smart parts of a much larger package, or only offer one numerical algorithm. The *differint* package offers a variety of algorithms for computing differintegrals and several auxiliary functions relating to generalized binomial coefficients. ## Installation This project requires Python 3+ and NumPy to run. Installation from the Python Packaging index (https://pypi.python.org/pypi) is simple using pip. ```python pip install differint ``` ## Included Files Core File | Description --------- | ----------- differint/differint.py | Contains algorithms for fractional differentiation and integration. tests/test.py | Testing suite containing all unit tests. Both of the above files have corresponding `__init__.py` files. Setup File | Description ---------- | ----------- .gitignore | List of files to ignore during `git` push/pull requests. CONTRIBUTING.md | Instructions for potential contributors to the *differint* project. LICENSE | MIT license agreement. MANIFEST.in | Selects the README file for uploading to PyPi. README.md | This README file. README.rst | This README file in ReStructuredText format. __init__.py | `__init__` file for overall package. changelog.txt | List of updates to package. setup.py | Script for downloading package from `pip`. ## Example Usage Taking a fractional derivative is easy with the *differint* package. Let's take the 1/2 derivative of the square root function on the interval [0,1], using the Riemann-Liouville definition of the fractional derivative. ```python import numpy as np import differint.differint as df def f(x): return x**0.5 DF = df.RL(0.5, f) print(DF) ``` You can also specify the endpoints of the domain and the number of points used as follows. ```python DF = df.RL(0.5, f, 0, 1, 128) ``` For a description of all functions, their signatures, and more usage examples, see the project's [wiki](https://github.com/differint/differint/wiki). ## Tests All tests can be run with nose from the command line. Setup will automatically install nose if it is not present on your machine. ```python python setup.py tests ``` Alternatively, you can run the test script directly. ```python cd <file_path>/differint/tests/ python test.py ``` ## API Reference In this section we cover the usage of the various functions within the *differint* package. Main Function | Usage ------------- | ----- [GLpoint](https://github.com/differint/differint/wiki/GLpoint) | Computes the GL differintegral at a point [GL](https://github.com/differint/differint/wiki/GL) | Computes the GL differintegral over an entire array of function values using the Fast Fourier Transform [GLI](https://github.com/differint/differint/wiki/GLI) | Computes the improved GL differintegral over an entire array of function values [CRONE](https://github.com/differint/differint/wiki/CRONE) | Calculates the GL derivative approximation using the CRONE operator. [RLpoint](https://github.com/differint/differint/wiki/RLpoint) | Computes the RL differintegral at a point [RL](https://github.com/differint/differint/wiki/RL) | Computes the RL differintegral over an entire array of function values using matrix methods [CaputoL1point](https://github.com/differint/differint/wiki/CaputoL1point) | Computes the Caputo differintegral at a point using the L1 algorithm [CaputoL2point](https://github.com/differint/differint/wiki/CaputoL2point) | Computes the Caputo differintegral at a point using the L2 algorithm [CaputoL2Cpoint](https://github.com/differint/differint/wiki/CaputoL2Cpoint) | Computes the Caputo differintegral at a point using the L2C algorithm [PCsolver](https://github.com/differint/differint/wiki/PCsolver) | Solves IVPs for fractional ODEs of the form ${}^CD^\alpha[y(x)]=f(x,y(x))$ using the predictor-corrector method Auxiliary Function | Usage ------------------ | ----- [isInteger](https://github.com/differint/differint/wiki/isInteger) | Determine if a number is an integer [isPositiveInteger](https://github.com/differint/differint/wiki/isPositiveInteger) | Determine if a number is an integer, and if it is greater than 0 [checkValues](https://github.com/differint/differint/wiki/checkValues) | Used to check for valid algorithm input types [GLIinterpolat](https://github.com/differint/differint/wiki/GLIinterpolat) | Define interpolating coefficients for the improved GL algorithm [functionCheck](https://github.com/differint/differint/wiki/functionCheck) | Determines if algorithm function input is callable or an array of numbers [poch](https://github.com/differint/differint/wiki/poch) | Computes the Pochhammer symbol [Gamma](https://github.com/differint/differint/wiki/Gamma) | Computes the gamma function, an extension of the factorial to complex numbers [Beta](https://github.com/differint/differint/wiki/Beta) | Computes the beta function, a function related to the binomial coefficient [MittagLeffler](https://github.com/differint/differint/wiki/MittagLeffler) | Computes the two parameter Mittag-Leffler function, which is important in the solution of fractional ODEs [GLcoeffs](https://github.com/differint/differint/wiki/GLcoeffs) | Determines the convolution filter composed of generalized binomial coefficients used in the GL algorithm [RLcoeffs](https://github.com/differint/differint/wiki/RLcoeffs) | Calculates the coefficients used in the RLpoint and RL algorithms [RLmatrix](https://github.com/differint/differint/wiki/RLmatrix) | Determines the matrix used in the RL algorithm [PCcoeffs](https://github.com/differint/differint/wiki/PCcoeffs) | Determines the coefficients used in the PC algorithm ## Contribute To contribute to this project, see the [contributing guidelines](https://github.com/snimpids/differint/blob/master/CONTRIBUTING.md). ## Credits Baleanu, D., Diethelm, K., Scalas, E., & Trujillo, J.J. (2012). Fractional Calculus: Models and Numerical Methods. World Scientific. Oldham, K.B. & Spanier, J. (1974). The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press Inc. Karniadakis, G.E.. (2019). Handbook of Fractional Calculus with Applications Volume 3: Numerical Methods. De Gruyter. ## License MIT © [Matthew Adams](2018)


نیازمندی

مقدار نام
- numpy


نحوه نصب


نصب پکیج whl differint-1.0.0:

    pip install differint-1.0.0.whl


نصب پکیج tar.gz differint-1.0.0:

    pip install differint-1.0.0.tar.gz