معرفی شرکت ها


diffeqzoo-0.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Ordinary differential equation zoo
ویژگی مقدار
سیستم عامل -
نام فایل diffeqzoo-0.0.4
نام diffeqzoo
نسخه کتابخانه 0.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Nicholas Krämer
ایمیل نویسنده nicholas.kraemer@uni-tuebingen.de
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/diffeqzoo/
مجوز MIT
# diffeqzoo [![PyPi Version](https://img.shields.io/pypi/v/diffeqzoo.svg?style=flat-square)](https://pypi.org/project/diffeqzoo/) [![Docs](https://readthedocs.org/projects/pip/badge/?version=latest&style=flat-square)](https://diffeqzoo.readthedocs.io) [![GitHub stars](https://img.shields.io/github/stars/pnkraemer/diffeqzoo.svg?style=flat-square&logo=github&label=Stars&logoColor=white)](https://github.com/pnkraemer/diffeqzoo) [![gh-actions](https://img.shields.io/github/actions/workflow/status/pnkraemer/diffeqzoo/ci.yaml?branch=main&style=flat-square)](https://github.com/pnkraemer/diffeqzoo/actions?query=workflow%3Aci) <a href="https://github.com/pnkraemer/diffeqzoo/blob/main/LICENSE"><img src="https://img.shields.io/github/license/pnkraemer/diffeqzoo?style=flat-square&color=2b9348" alt="License Badge"/></a> _So, what was the initial condition of the restricted three-body problem again?_ ``diffeqzoo`` delivers all differential equation test problems in one place. It works with numpy and jax. ## Installation Get the most recent stable version from PyPi: ``` pip install diffeqzoo ``` Or directly from GitHub: ``` pip install git+https://github.com/pnkraemer/diffeqzoo.git ``` These commands assume that NumPy or JAX are installed separately by the user. Read more about installing this package [here](https://diffeqzoo.readthedocs.io/en/latest/getting_started/installation.html). ## Features include * Oscillating systems (Lotka-Volterra, Fitzhugh-Nagumo, Van-der-Pol, ...) * Chaotic systems (Lorenz63, Lorenz96, Roessler, ...) * Epidemiological models (SIR, SEIR, SIRD, ...) * N-Body problems and celestial mechanics (Rigid-body, restricted-three-body, Pleiades, Henon-Heiles, ...) * Chemical reactions (HIRES, ROBER, ...) * Boundary value problems ### As well as * Flexibly NumPy and JAX-backends. Other than one of those two, there are 0 (zero!) dependencies. * Mathematical descriptions **and BibTex entries** of the ODE problems * Compatibility with all NumPy/JAX-based ODE solvers: SciPy, JAX, Diffrax, ProbNum, Tornadox, etc.. and many more goodies. * **DOCUMENTATION:** [documentation](https://diffeqzoo.readthedocs.io) * **ISSUE TRACKER:** [issue tracker](https://github.com/pnkraemer/diffeqzoo/issues) ## Quick example ```python >>> from diffeqzoo import ivps, backend >>> backend.select("numpy") >>> >>> # Create test problems like this >>> f, u0, t_span, f_args = ivps.lotka_volterra() >>> x = f(u0, *f_args) >>> print(x) [-10. 10.] >>> >>> # The numpy backend determines the type of input/output >>> print(type(x)) <class 'numpy.ndarray'> >>> >>> # All sorts of ODEs are available, e.g., Rigid-Body: >>> f, u0, t_span, f_args = ivps.rigid_body() >>> print(f(u0, *f_args)) [-0. 1.125 -0. ] >>> >>> ## make it jax >>> backend.change_to("jax") >>> f, u0, t_span, f_args = ivps.rigid_body() >>> x = f(u0, *f_args) >>> print(x) [-0. 1.125 -0. ] >>> print(type(x)) <class 'jaxlib.xla_extension.Array'> ``` ## Similar projects * F. Mazzia et al. published a [test set for IVP solvers](https://archimede.uniba.it/~testset/testsetivpsolvers/?page_id=51) for Matlab and Fortran. There is a similar [test set for BVP solvers](https://archimede.uniba.it/~bvpsolvers/testsetbvpsolvers/). Neither one offers Python code, and both also run benchmarks, which `diffeqzoo` does not care about at all. * E. Hairer et al. published their [stiff ODE test set](https://www.unige.ch/~hairer/testset/testset.html), but there is no Python code * [NonlinearBenchmark](https://www.nonlinearbenchmark.org/) hosts datasets of nonlinear dynamical system observations. They are quite specialised problems, and don't contain the textbook problems like Lotka-Volterra, van der Pol, etc.. * DifferentialEquations.jl provides [example ODE problems](https://diffeq.sciml.ai/stable/types/ode_types/#Example-Problems) in Julia. * [ProbNum's problem zoo](https://probnum.readthedocs.io/en/latest/api/problems/zoo.diffeq.html) offers a similar set of problems to `diffeqzoo` (no surprise -- the set of authors intersects) but tied to ProbNum's ODE solver interface. `diffeqzoo` is less of an API, switches more flexibly between numpy and jax (at the time of developing), and contains more problems. * W. Gilpin [published a benchmark](https://github.com/williamgilpin/dysts) for forecasting and data-driven modeling, which comes with a large number of (mostly chaotic) dynamical systems. * J. Meier lists a number of ODE attractors [on his website](http://www.3d-meier.de/tut19/Seite1.html). * GeometricProblems.jl curates a similar list of example problems with interesting geometric structure, in Julia ([link](https://github.com/JuliaGNI/GeometricProblems.jl)) Anything missing in this list? Please open an issue or make a pull request.


نیازمندی

مقدار نام
- jupyter
- matplotlib
- scipy
- jupytext
- diffrax
- jax[cpu]
- flake8
- flake8-docstrings
- isort
- black
- nbqa
- jupytext
- pylint
- numpy
- pytest
- pytest-randomly
- pytest-cases
- jax[cpu]
- numpy


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl diffeqzoo-0.0.4:

    pip install diffeqzoo-0.0.4.whl


نصب پکیج tar.gz diffeqzoo-0.0.4:

    pip install diffeqzoo-0.0.4.tar.gz