معرفی شرکت ها


diffdrr-0.3.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Auto-differentiable digitally reconstructed radiographs in PyTorch
ویژگی مقدار
سیستم عامل -
نام فایل diffdrr-0.3.1
نام diffdrr
نسخه کتابخانه 0.3.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Vivek Gopalakrishnan
ایمیل نویسنده vivekg@mit.edu
آدرس صفحه اصلی https://github.com/eigenvivek/DiffDRR
آدرس اینترنتی https://pypi.org/project/diffdrr/
مجوز Apache Software License 2.0
DiffDRR ================ <!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! --> > Auto-differentiable DRR synthesis and optimization in PyTorch [![CI](https://github.com/eigenvivek/DiffDRR/actions/workflows/test.yaml/badge.svg)](https://github.com/eigenvivek/DiffDRR/actions/workflows/test.yaml) [![Paper shield](https://img.shields.io/badge/arXiv-2208.12737-red.svg)](https://arxiv.org/abs/2208.12737) [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](LICENSE) [![Downloads](https://static.pepy.tech/personalized-badge/diffdrr?period=month&units=international_system&left_color=grey&right_color=blue&left_text=downloads.month)](https://pepy.tech/project/diffdrr) [![Docs](https://img.shields.io/badge/docs-passing-brightgreen.svg)](https://vivekg.dev/DiffDRR/) [![Code style: black](https://img.shields.io/badge/Code%20style-black-black.svg)](https://github.com/psf/black) `DiffDRR` is a PyTorch-based digitally reconstructed radiograph (DRR) generator that provides 1. Auto-differentiable DRR syntheisis 2. GPU-accelerated rendering 3. A pure Python implementation Most importantly, `DiffDRR` implements DRR synthesis as a PyTorch module, making it interoperable in deep learning pipelines. - [Installation Guide](#installation-guide) - [Usage](#usage) - [Example: Rigid 2D-to-3D registration](#application-6-dof-slice-to-volume-registration) - [How does `DiffDRR` work?](#how-does-diffdrr-work) - [Citing `DiffDRR`](#citing-diffdrr) ## Installation Guide To install `DiffDRR` with conda (or mamba): ``` zsh conda install -c eigenvivek diffdrr conda install -c nvidia pytorch-cuda=11.7 # Optional for GPU support ``` To install `DiffDRR` from PyPI: ``` zsh pip install diffdrr ``` ## Usage The following minimal example specifies the geometry of the projectional radiograph imaging system and traces rays through a CT volume: ``` python import matplotlib.pyplot as plt import torch from diffdrr.drr import DRR from diffdrr.data import load_example_ct from diffdrr.visualization import plot_drr # Read in the volume volume, spacing = load_example_ct() # Get parameters for the detector bx, by, bz = torch.tensor(volume.shape) * torch.tensor(spacing) / 2 detector_kwargs = { "sdr" : 300.0, "theta" : torch.pi, "phi" : 0, "gamma" : torch.pi / 2, "bx" : bx, "by" : by, "bz" : bz, } # Make the DRR drr = DRR(volume, spacing, height=200, delx=4.0).to("cuda" if torch.cuda.is_available() else "cpu") img = drr.project(**detector_kwargs) ax = plot_drr(img) plt.show() ``` ![](index_files/figure-commonmark/cell-2-output-1.png) On a single NVIDIA RTX 2080 Ti GPU, producing such an image takes <details> <summary>Code</summary> ``` python ``` </details> 34.9 ms ± 22.5 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) The full example is available at [`tutorials/introduction.ipynb`](tutorials/introduction.ipynb). ## Application: 6-DoF Slice-to-Volume Registration We demonstrate the utility of our auto-differentiable DRR generator by solving a 6-DoF registration problem with gradient-based optimization. Here, we generate two DRRs: 1. A fixed DRR from a set of ground truth parameters 2. A moving DRR from randomly initialized parameters To solve the registration problem, we use gradient descent to maximize an image loss similarity metric between the two DRRs. This produces optimization runs like this: ![](https://cdn.githubraw.com/eigenvivek/DiffDRR/7a6a44aeab58d19cc7a4afabfc5aabab3a494974/experiments/registration/results/momentum_dampen/gifs/converged/649.gif) The full example is available at [`experiments/registration`](experiments/registration). ## How does `DiffDRR` work? `DiffDRR` reformulates Siddon’s method ([Siddon RL. Fast calculation of the exact radiological path for a three-dimensional CT array. Medical Physics, 2(12):252–5, 1985.](https://doi.org/10.1118/1.595715)), the canonical algorithm for calculating the radiologic path of an X-ray through a volume, as a series of vectorized tensor operations. This version of the algorithm is easily implemented in tensor algebra libraries like PyTorch to achieve a fast auto-differentiable DRR generator. ## Citing `DiffDRR` If you find `DiffDRR` useful in your work, please cite our [paper](https://doi.org/10.1007/978-3-031-23179-7_1) (or the [freely accessible arXiv version](https://arxiv.org/abs/2208.12737)): @inproceedings{gopalakrishnanDiffDRR2022, author = {Gopalakrishnan, Vivek and Golland, Polina}, title = {Fast Auto-Differentiable Digitally Reconstructed Radiographs for Solving Inverse Problems in Intraoperative Imaging}, year = {2022}, booktitle = {Clinical Image-based Procedures: 11th International Workshop, CLIP 2022, Held in Conjunction with MICCAI 2022, Singapore, Proceedings}, series = {Lecture Notes in Computer Science}, publisher = {Springer}, doi = {https://doi.org/10.1007/978-3-031-23179-7_1}, }


نیازمندی

مقدار نام
- torch
- pydicom
- matplotlib
- seaborn
- tqdm
- imageio
- fastcore
- nbdev
- black
- flake8
- ipykernel
- ipywidgets


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl diffdrr-0.3.1:

    pip install diffdrr-0.3.1.whl


نصب پکیج tar.gz diffdrr-0.3.1:

    pip install diffdrr-0.3.1.tar.gz