معرفی شرکت ها


diegoplot-1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A scientific style plot tool based on matplotlib.
ویژگی مقدار
سیستم عامل -
نام فایل diegoplot-1.2
نام diegoplot
نسخه کتابخانه 1.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده diego <caikaidi@caikaidi.cn>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/diegoplot/
مجوز -
# sciplot A scientific style plot tool based on matplotlib. ![Style demonstration](./example/Figure_1.png) ## Features - Plot figures for scientific articles painlessly, with right size, font, and others. - Quick preview, quick as hell. - Supporting three built in styles and custom style. - (a) Color cycle, looks cleaner for online journals. - (b) Color and marker cycle, support black-and-white view. - (c) Line style and marker cycle, support up to 16 lines without repeat. - (d) Custom style, easy to set and useful when you got several groups of curves. ## Install Install by pip: ```shell pip install diegoplot ``` Import the package: ```python from diegoplot import diegoplot diegoplot.DiegoPlot() ``` Or, you can copy the `diegoplot.py` file into the folder of your project and import it by: ```python import diegoplot diegoplot.DiegoPlot() ``` ## mini demo To preview the figure comes from your data, the fast way is just `SciPlot(x, y)`. No configurations needed, you'll get a pretty much finished figure. Optionally, label, legend, and tag could be given as keyword arguments. ```python # This demo gives the figure (a) above. import numpy as np from diegoplot import diegoplot x = np.linspace(0, 10, 100) y = np.array([(a + 1) * np.sin(x) for a in range(4)]) diegoplot.DiegoPlot(x, y, label=['x-axis', 'y-axis'], legend=['line {}'.format(n + 1) for n in range(4)], tag='(a)') ``` The data, `x` and `y`, could be in different kinds of. - A single curve like `x = [x1, x2, ...]` and `y = [y1, y2, ...]` is fine. - Multiple curves with same `x` coordinates should be given like `x = [x1, x2, ...]` and `y = [[curve1_y1, curve1_y2, ...], [curve2_y1, curve2_y2, ...], ...]` - Of course, multiple curves can have different `x` coordinates, just give both `x` and `y` in the form of `[[...],[...],...]`. And make sure they are within the same length. ## Fine tuning A fine-tuning is needed to generate the final product. In this case, you are supposed to use the `sciplot` in a detailed way. There are up to 6 steps: load data, plot data, plot label, plot legend, plot tag, and show. ```python # This demo gives the figure (b) above. import numpy as np from diegoplot import diegoplot x = np.linspace(0, 10, 30) y = np.array([(a + 1) * np.sin(x) for a in range(4)]) dp = diegoplot.DiegoPlot() dp.manual_load(x, y, ['x-axis', 'y-axis'], ['line {}'.format(n + 1) for n in range(4)]) dp.plot_data(1) # 1 for style 1. Currently, there are 3 built in styles, 0, 1, and 2. # Corresponding to figure (a), (b), and (c). dp.plot_label() # Optionally, label can be given here as a parameter. dp.plot_legend() # Optionally, legend can be given here as a parameter. dp.plot_tag('(b)') # The position of the tag is configurable, see annotation of this function. dp.show() # Comes with an auto-tight function. Pass through auto_tight=False to disable it. ``` Apart those steps means you can write your own, customized ones. Or add some operations before `show()`. Change the range of axis is often used to make curves looks better, or avoid interfering with legend and tag. This is change by `sp.ax`, which is exactly the axis object of `matplotlib`. You should see the documentation of `matplotlib` for more, but I'll list some useful functions. ```python # axis span range dp.ax.set_xlim([0, 1]) dp.ax.set_ylim([0, 1]) # where are the scale lines dp.ax.set_xticks([0, 0.5, 1]) dp.ax.set_yticks([0, 0.5, 1]) # plot text, lines, annotates dp.ax.text() dp.ax.hline() dp.ax.vline() dp.ax.annotate() # create another y-axis ax2 = dp.ax.twinx() ``` ## Load data Data can be load in different ways. They can be load manually by `sp.manual_load()`, or load form `txt`, `npz`, and `csv` files. For data generated by python, `npz` is strongly recommended. `sciplot` have three built-in functions to load these data: `load_npz()`, `load_txt()`, `load_csv()`. These functions are coding for my use case. Annotations are given about how the data are organized.


نیازمندی

مقدار نام
- cycler
- matplotlib
- numpy


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl diegoplot-1.2:

    pip install diegoplot-1.2.whl


نصب پکیج tar.gz diegoplot-1.2:

    pip install diegoplot-1.2.tar.gz