معرفی شرکت ها


dicodile-0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Distributed Convolutional Dictionary Learning
ویژگی مقدار
سیستم عامل -
نام فایل dicodile-0.3
نام dicodile
نسخه کتابخانه 0.3
نگهدارنده ['Thomas Moreau']
ایمیل نگهدارنده ['thomas.moreau@inria.fr']
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/dicodile/
مجوز BSD (3-clause)
|Build Status| |codecov| This package is still under development. If you have any trouble running this code, please `open an issue on GitHub <https://github.com/tomMoral/dicodile/issues>`_. DiCoDiLe -------- Package to run the experiments for the preprint paper `Distributed Convolutional Dictionary Learning (DiCoDiLe): Pattern Discovery in Large Images and Signals <https://arxiv.org/abs/1901.09235>`__. Installation ^^^^^^^^^^^^ All the tests should work with python >=3.6. This package depends on the python library ``numpy``, ``matplotlib``, ``scipy``, ``mpi4py``, ``joblib``. The package can be installed with the following command run from the root of the package. .. code:: bash pip install -e . Or using the conda environment: .. code:: bash conda env create -f dicodile_env.yml To build the doc use: .. code:: bash pip install -e .[doc] cd docs make html To run the tests: .. code:: bash pip install -e .[test] pytest . Usage ^^^^^ All experiments are with ``mpi4py`` and will try to spawned workers depending on the parameters set in the experiments. If you need to use an ``hostfile`` to configure indicate to MPI where to spawn the new workers, you can set the environment variable ``MPI_HOSTFILE=/path/to/the/hostfile`` and it will be automatically detected in all the experiments. Note that for each experiments you should provide enough workers to allow the script to run. All figures can be generated using scripts in ``benchmarks``. Each script will generate and save the data to reproduce the figure. The figure can then be plotted by re-running the same script with the argument ``--plot``. The figures are saved in pdf in the ``benchmarks_results`` folder. The computation are cached with ``joblib`` to be robust to failures. .. note:: Open MPI tries to use all **up** network interfaces. This might cause the program to hang due to virtual network interfaces which could not actually be used to communicate with MPI processes. For more info `Open MPI FAQ <https://www.open-mpi.org/faq/?category=tcp#tcp-selection>`_. In case your program hangs, you can launch computation with the ``mpirun`` command: - either spefifying usable interfaces using ``--mca btl_tcp_if_include`` parameter: .. code-block:: bash $ mpirun -np 1 \ --mca btl_tcp_if_include wlp2s0 \ --hostfile hostfile \ python -m mpi4py examples/plot_mandrill.py - or by excluding the virtual interfaces using ``--mca btl_tcp_if_exclude`` parameter: .. code-block:: bash $ mpirun -np 1 \ --mca btl_tcp_if_exclude docker0 \ --hostfile hostfile \ python -m mpi4py examples/plot_mandrill.py Alternatively, you can also restrict the used interface by setting environment variables ``OMPI_MCA_btl_tcp_if_include`` or ``OMPI_MCA_btl_tcp_if_exclude`` .. code-block:: bash $ export OMPI_MCA_btl_tcp_if_include="wlp2s0" $ export OMPI_MCA_btl_tcp_if_exclude="docker0"`` .. |Build Status| image:: https://github.com/tomMoral/dicodile/workflows/unittests/badge.svg .. |codecov| image:: https://codecov.io/gh/tomMoral/dicodile/branch/main/graph/badge.svg :target: https://codecov.io/gh/tomMoral/dicodile BSD 3-Clause License Copyright (c) 2019-2021, the DiCoDiLe developers. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


نیازمندی

مقدار نام
- numpy
>=0.53.1 numba
- scipy
- matplotlib
- mpi4py
- threadpoolctl
- joblib
- download
- pandas
- flake8
- pre-commit
- numpydoc
- sphinx-bootstrap-theme
- sphinx-gallery
- pytest
- pytest-cov
- pytest-env


نحوه نصب


نصب پکیج whl dicodile-0.3:

    pip install dicodile-0.3.whl


نصب پکیج tar.gz dicodile-0.3:

    pip install dicodile-0.3.tar.gz