معرفی شرکت ها


diart-0.7.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Speaker diarization in real time
ویژگی مقدار
سیستم عامل -
نام فایل diart-0.7.0
نام diart
نسخه کتابخانه 0.7.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Juan Manuel Coria
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/juanmc2005/StreamingSpeakerDiarization
آدرس اینترنتی https://pypi.org/project/diart/
مجوز MIT
<br/> <p align="center"> <img width="40%" src="/logo.jpg" title="Logo" /> </p> <p align="center"> <img alt="PyPI Version" src="https://img.shields.io/pypi/v/diart?color=g"> <img alt="PyPI Downloads" src="https://static.pepy.tech/personalized-badge/diart?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=downloads"> <img alt="Top language" src="https://img.shields.io/github/languages/top/juanmc2005/StreamingSpeakerDiarization?color=g"> <img alt="Code size in bytes" src="https://img.shields.io/github/languages/code-size/juanmc2005/StreamingSpeakerDiarization?color=g"> <img alt="License" src="https://img.shields.io/github/license/juanmc2005/StreamingSpeakerDiarization?color=g"> </p> <div align="center"> <h4> <a href="#installation"> Installation </a> <span> | </span> <a href="#stream-audio"> Stream audio </a> <span> | </span> <a href="#custom-models"> Custom models </a> <span> | </span> <a href="#tune-hyper-parameters"> Tune hyper-parameters </a> <span> | </span> <a href="#build-pipelines"> Build pipelines </a> <br/> <a href="#websockets"> WebSockets </a> <span> | </span> <a href="#powered-by-research"> Research </a> <span> | </span> <a href="#citation"> Citation </a> <span> | </span> <a href="#reproducibility"> Reproducibility </a> </h4> </div> <br/> <p align="center"> <img width="100%" src="/demo.gif" title="Real-time diarization example" /> </p> ## Installation 1) Create environment: ```shell conda create -n diart python=3.8 conda activate diart ``` 2) Install audio libraries: ```shell conda install portaudio pysoundfile ffmpeg -c conda-forge ``` 3) Install diart: ```shell pip install diart ``` ### Get access to pyannote models By default, diart is based on [pyannote.audio](https://github.com/pyannote/pyannote-audio) models stored in the [huggingface](https://huggingface.co/) hub. To allow diart to use them, you need to follow these steps: 1) [Accept user conditions](https://huggingface.co/pyannote/segmentation) for the `pyannote/segmentation` model 2) [Accept user conditions](https://huggingface.co/pyannote/embedding) for the `pyannote/embedding` model 3) Install [huggingface-cli](https://huggingface.co/docs/huggingface_hub/quick-start#install-the-hub-library) and [log in](https://huggingface.co/docs/huggingface_hub/quick-start#login) with your user access token (or provide it manually in diart CLI or API). ## Stream audio ### From the command line A recorded conversation: ```shell diart.stream /path/to/audio.wav ``` A live conversation: ```shell # Use "microphone:ID" to select a non-default device # See `python -m sounddevice` for available devices diart.stream microphone ``` See `diart.stream -h` for more options. ### From python Use `RealTimeInference` to easily run a pipeline on an audio source and write the results to disk: ```python from diart import OnlineSpeakerDiarization from diart.sources import MicrophoneAudioSource from diart.inference import RealTimeInference from diart.sinks import RTTMWriter pipeline = OnlineSpeakerDiarization() mic = MicrophoneAudioSource(pipeline.config.sample_rate) inference = RealTimeInference(pipeline, mic, do_plot=True) inference.attach_observers(RTTMWriter(mic.uri, "/output/file.rttm")) prediction = inference() ``` For inference and evaluation on a dataset we recommend to use `Benchmark` (see notes on [reproducibility](#reproducibility)). ## Custom models Third-party models can be integrated seamlessly by subclassing `SegmentationModel` and `EmbeddingModel` (which are PyTorch `Module` subclasses): ```python from diart import OnlineSpeakerDiarization, PipelineConfig from diart.models import EmbeddingModel, SegmentationModel from diart.sources import MicrophoneAudioSource from diart.inference import RealTimeInference def model_loader(): return load_pretrained_model("my_model.ckpt") class MySegmentationModel(SegmentationModel): def __init__(self): super().__init__(model_loader) @property def sample_rate(self) -> int: return 16000 @property def duration(self) -> float: return 2 # seconds def forward(self, waveform): # self.model is created lazily return self.model(waveform) class MyEmbeddingModel(EmbeddingModel): def __init__(self): super().__init__(model_loader) def forward(self, waveform, weights): # self.model is created lazily return self.model(waveform, weights) config = PipelineConfig( segmentation=MySegmentationModel(), embedding=MyEmbeddingModel() ) pipeline = OnlineSpeakerDiarization(config) mic = MicrophoneAudioSource(config.sample_rate) inference = RealTimeInference(pipeline, mic) prediction = inference() ``` ## Tune hyper-parameters Diart implements a hyper-parameter optimizer based on [optuna](https://optuna.readthedocs.io/en/stable/index.html) that allows you to tune any pipeline to any dataset. ### From the command line ```shell diart.tune /wav/dir --reference /rttm/dir --output /output/dir ``` See `diart.tune -h` for more options. ### From python ```python from diart.optim import Optimizer optimizer = Optimizer("/wav/dir", "/rttm/dir", "/output/dir") optimizer(num_iter=100) ``` This will write results to an sqlite database in `/output/dir`. ### Distributed optimization For bigger datasets, it is sometimes more convenient to run multiple optimization processes in parallel. To do this, create a study on a [recommended DBMS](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/004_distributed.html#sphx-glr-tutorial-10-key-features-004-distributed-py) (e.g. MySQL or PostgreSQL) making sure that the study and database names match: ```shell mysql -u root -e "CREATE DATABASE IF NOT EXISTS example" optuna create-study --study-name "example" --storage "mysql://root@localhost/example" ``` You can now run multiple identical optimizers pointing to this database: ```shell diart.tune /wav/dir --reference /rttm/dir --storage mysql://root@localhost/example ``` or in python: ```python from diart.optim import Optimizer from optuna.samplers import TPESampler import optuna db = "mysql://root@localhost/example" study = optuna.load_study("example", db, TPESampler()) optimizer = Optimizer("/wav/dir", "/rttm/dir", study) optimizer(num_iter=100) ``` ## Build pipelines For a more advanced usage, diart also provides building blocks that can be combined to create your own pipeline. Streaming is powered by [RxPY](https://github.com/ReactiveX/RxPY), but the `blocks` module is completely independent and can be used separately. ### Example Obtain overlap-aware speaker embeddings from a microphone stream: ```python import rx.operators as ops import diart.operators as dops from diart.sources import MicrophoneAudioSource from diart.blocks import SpeakerSegmentation, OverlapAwareSpeakerEmbedding segmentation = SpeakerSegmentation.from_pyannote("pyannote/segmentation") embedding = OverlapAwareSpeakerEmbedding.from_pyannote("pyannote/embedding") sample_rate = segmentation.model.sample_rate mic = MicrophoneAudioSource(sample_rate) stream = mic.stream.pipe( # Reformat stream to 5s duration and 500ms shift dops.rearrange_audio_stream(sample_rate=sample_rate), ops.map(lambda wav: (wav, segmentation(wav))), ops.starmap(embedding) ).subscribe(on_next=lambda emb: print(emb.shape)) mic.read() ``` Output: ``` # Shape is (batch_size, num_speakers, embedding_dim) torch.Size([1, 3, 512]) torch.Size([1, 3, 512]) torch.Size([1, 3, 512]) ... ``` ## WebSockets Diart is also compatible with the WebSocket protocol to serve pipelines on the web. ### From the command line ```commandline diart.serve --host 0.0.0.0 --port 7007 diart.client microphone --host <server-address> --port 7007 ``` **Note:** please make sure that the client uses the same `step` and `sample_rate` than the server with `--step` and `-sr`. See `-h` for more options. ### From python For customized solutions, a server can also be created in python using the `WebSocketAudioSource`: ```python from diart import OnlineSpeakerDiarization from diart.sources import WebSocketAudioSource from diart.inference import RealTimeInference pipeline = OnlineSpeakerDiarization() source = WebSocketAudioSource(pipeline.config.sample_rate, "localhost", 7007) inference = RealTimeInference(pipeline, source) inference.attach_hooks(lambda ann_wav: source.send(ann_wav[0].to_rttm())) prediction = inference() ``` ## Powered by research Diart is the official implementation of the paper *[Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation](/paper.pdf)* by [Juan Manuel Coria](https://juanmc2005.github.io/), [Hervé Bredin](https://herve.niderb.fr), [Sahar Ghannay](https://saharghannay.github.io/) and [Sophie Rosset](https://perso.limsi.fr/rosset/). > We propose to address online speaker diarization as a combination of incremental clustering and local diarization applied to a rolling buffer updated every 500ms. Every single step of the proposed pipeline is designed to take full advantage of the strong ability of a recently proposed end-to-end overlap-aware segmentation to detect and separate overlapping speakers. In particular, we propose a modified version of the statistics pooling layer (initially introduced in the x-vector architecture) to give less weight to frames where the segmentation model predicts simultaneous speakers. Furthermore, we derive cannot-link constraints from the initial segmentation step to prevent two local speakers from being wrongfully merged during the incremental clustering step. Finally, we show how the latency of the proposed approach can be adjusted between 500ms and 5s to match the requirements of a particular use case, and we provide a systematic analysis of the influence of latency on the overall performance (on AMI, DIHARD and VoxConverse). <p align="center"> <img height="400" src="/figure1.png" title="Visual explanation of the system" width="325" /> </p> ## Citation If you found diart useful, please make sure to cite our paper: ```bibtex @inproceedings{diart, author={Coria, Juan M. and Bredin, Hervé and Ghannay, Sahar and Rosset, Sophie}, booktitle={2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)}, title={Overlap-Aware Low-Latency Online Speaker Diarization Based on End-to-End Local Segmentation}, year={2021}, pages={1139-1146}, doi={10.1109/ASRU51503.2021.9688044}, } ``` ## Reproducibility ![Results table](/table1.png) Diart aims to be lightweight and capable of real-time streaming in practical scenarios. Its performance is very close to what is reported in the paper (and sometimes even a bit better). To obtain the best results, make sure to use the following hyper-parameters: | Dataset | latency | tau | rho | delta | |-------------|---------|--------|--------|-------| | DIHARD III | any | 0.555 | 0.422 | 1.517 | | AMI | any | 0.507 | 0.006 | 1.057 | | VoxConverse | any | 0.576 | 0.915 | 0.648 | | DIHARD II | 1s | 0.619 | 0.326 | 0.997 | | DIHARD II | 5s | 0.555 | 0.422 | 1.517 | `diart.benchmark` and `diart.inference.Benchmark` can run, evaluate and measure the real-time latency of the pipeline. For instance, for a DIHARD III configuration: ```shell diart.benchmark /wav/dir --reference /rttm/dir --tau=0.555 --rho=0.422 --delta=1.517 --segmentation pyannote/segmentation@Interspeech2021 ``` or using the inference API: ```python from diart.inference import Benchmark, Parallelize from diart import OnlineSpeakerDiarization, PipelineConfig from diart.models import SegmentationModel benchmark = Benchmark("/wav/dir", "/rttm/dir") name = "pyannote/segmentation@Interspeech2021" segmentation = SegmentationModel.from_pyannote(name) config = PipelineConfig( # Set the model used in the paper segmentation=segmentation, step=0.5, latency=0.5, tau_active=0.555, rho_update=0.422, delta_new=1.517 ) benchmark(OnlineSpeakerDiarization, config) # Run the same benchmark in parallel p_benchmark = Parallelize(benchmark, num_workers=4) if __name__ == "__main__": # Needed for multiprocessing p_benchmark(OnlineSpeakerDiarization, config) ``` This pre-calculates model outputs in batches, so it runs a lot faster. See `diart.benchmark -h` for more options. For convenience and to facilitate future comparisons, we also provide the [expected outputs](/expected_outputs) of the paper implementation in RTTM format for every entry of Table 1 and Figure 5. This includes the VBx offline topline as well as our proposed online approach with latencies 500ms, 1s, 2s, 3s, 4s, and 5s. ![Figure 5](/figure5.png) ## License ``` MIT License Copyright (c) 2021 Université Paris-Saclay Copyright (c) 2021 CNRS Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ``` <p>Logo generated by <a href="https://www.designevo.com/" title="Free Online Logo Maker">DesignEvo free logo designer</a></p>


نیازمندی

مقدار نام
>=1.20.2 numpy
>=3.3.3 matplotlib
>=3.2.0 rx
>=1.6.0 scipy
>=0.4.2 sounddevice
>=0.3.0 einops
>=4.64.0 tqdm
>=1.4.2 pandas
>=1.12.1 torch
>=0.14.0 torchvision
<1.0,>=0.12.1 torchaudio
>=2.1.1 pyannote.audio
>=4.5 pyannote.core
>=4.1.1 pyannote.database
>=3.2 pyannote.metrics
>=2.10 optuna
>=0.6.4 websocket-server
>=0.58.0 websocket-client
>=12.5.1 rich


نحوه نصب


نصب پکیج whl diart-0.7.0:

    pip install diart-0.7.0.whl


نصب پکیج tar.gz diart-0.7.0:

    pip install diart-0.7.0.tar.gz