معرفی شرکت ها


dhg-0.9.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DHG is a Deep Learning Framework for Graph Neural Network and Hypergraph Neural Networks.
ویژگی مقدار
سیستم عامل -
نام فایل dhg-0.9.3
نام dhg
نسخه کتابخانه 0.9.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده yifanfeng97
ایمیل نویسنده evanfeng97@qq.com
آدرس صفحه اصلی https://deephypergraph.com
آدرس اینترنتی https://pypi.org/project/dhg/
مجوز Apache-2.0
<p align="center"> <img src="https://deephypergraph.com/logo_DHG.png" height="200"> </p> ![Release version](https://img.shields.io/github/v/release/iMoonLab/DeepHypergraph) [![PyPI version](https://img.shields.io/pypi/v/dhg?color=purple)](https://pypi.org/project/dhg/) [![Website Build Status](https://github.com/yifanfeng97/dhg-page-source/actions/workflows/website.yml/badge.svg)](https://deephypergraph.com/) [![Documentation Status](https://readthedocs.org/projects/deephypergraph/badge/?version=latest)](https://deephypergraph.readthedocs.io/) [![Downloads](https://pepy.tech/badge/dhg)](https://pepy.tech/project/dhg) [![Visits Badge](https://visitor-badge.glitch.me/badge?page_id=iMoonLab.DeepHypergraph)](https://visitor-badge.glitch.me/) [![license](https://img.shields.io/github/license/imoonlab/DeepHypergraph)](LICENSE) <!-- [![Code style: Black](https://img.shields.io/badge/code%20style-Black-000000.svg)](https://github.com/psf/black) --> <!-- [![Supported Python versions](https://img.shields.io/pypi/pyversions/dhg)](https://pypi.org/project/dhg/) --> **[Website](https://deephypergraph.com/)** | **[Documentation](https://deephypergraph.readthedocs.io/)** | **[Tutorials](https://deephypergraph.readthedocs.io/en/latest/tutorial/overview.html)** | **[中文文档](https://deephypergraph.readthedocs.io/en/latest/zh/overview.html)** | **[Official Examples](https://deephypergraph.readthedocs.io/en/latest/examples/vertex_cls/index.html)** | **[Discussions](https://github.com/iMoonLab/DeepHypergraph/discussions)** ## News - 2022-09-25 -> **v0.9.2** is now available! More datasets, SOTA models, and visualizations are included! - 2022-09-25 -> **v0.9.2** 正式发布! 包含更多数据集、最新模型和可视化功能! - 2022-08-25 -> DHG's first version **v0.9.1** is now available! - 2022-08-25 -> DHG的第一个版本 **v0.9.1** 正式发布! **DHG** *(DeepHypergraph)* is a deep learning library built upon [PyTorch](https://pytorch.org) for learning with both Graph Neural Networks and Hypergraph Neural Networks. It is a general framework that supports both low-order and high-order message passing like **from vertex to vertex**, **from vertex in one domain to vertex in another domain**, **from vertex to hyperedge**, **from hyperedge to vertex**, **from vertex set to vertex set**. It supports a wide variety of structures like low-order structures (graph, directed graph, bipartite graph, etc.), high-order structures (hypergraph, etc.). Various spectral-based operations (like Laplacian-based smoothing) and spatial-based operations (like message psssing from domain to domain) are integrated inside different structures. It provides multiple common metrics for performance evaluation on different tasks. Many state-of-the-art models are implemented and can be easily used for research. We also provide various visualization tools for both low-order structures and high-order structures. In addition, DHG's [dhg.experiments](https://deephypergraph.readthedocs.io/en/latest/api/experiments.html) module (that implements **Auto-ML** upon [Optuna](https://optuna.org)) can help you automatically tune the hyper-parameters of your models in training and easily outperforms the state-of-the-art models. ![Framework of DHG Structures](https://deephypergraph.com/fw_dhg_structure.jpg) ![Framework of DHG Function Library](https://deephypergraph.com/fw_dhg_other.jpg) * [Hightlights](#highlights) * [Installation](#installation) * [Quick Start](#quick-start) * [Examples](#examples) * [Datasets](#datasets) * [Metrics](#metrics) * [Implemented Models](#implemented-models) --------------------------------------------------------------- ## Highlights - **Support High-Order Message Passing on Structure**: DHG supports pair-wise message passing on the graph structure and beyond-pair-wise message passing on the hypergraph structure. - **Shared Ecosystem with Pytorch Framework**: DHG is built upon Pytorch, and any Pytorch-based models can be integrated into DHG. If you are familiar with Pytorch, you can easily use DHG. - **Powerful API for Designing GNNs and HGNNs**: DHG provides various Laplacian matrices and message passing functions to help build your spectral/spatial-based models, respectively. - **Visualization of Graphs and Hypergraphs** DHG provides a powerful visualization tool for graph and hypergraph. You can easily visualize the structure of your graph and hypergraph. - **Bridge the Gap between Graphs and Hypergraphs**: DHG provides functions to build hypergraph from graph and build graph from hypergraph. Maybe promoting the graph to hypergraph can exploit those potential high-order connections and improve the performance of your model. - **Attach Spectral/Spatial-Based Operations to Structure**: In DHG, those Laplacian matrices and message passing functions are attached to the graph/hypergraph structure. As soon as you build a structure with DHG, those functions will be ready to be used in the process of building your model. - **Comprehensive, Flexible, and Convenience**: DHG provides random graph/hypergraph generators, various state-of-the-art graph/hypergraph convolutional layers and models, various public graph/hypergraph datasets, and various evaluation metrics. - **Support Tuning Structure and Model with Auto-ML**: The Optuna library endows DHG with the Auto-ML ability. DHG supports automatically searching the optimal configurations for the construction of graph/hypergraph structure and the optimal hyper-parameters for your model and training. ## Installation Current, the stable version of **DHG** is 0.9.2. You can install it with ``pip`` as follows: ```python pip install dhg ``` You can also try the nightly version (0.9.3) of **DHG** library with ``pip`` as follows: ```python pip install git+https://github.com/iMoonLab/DeepHypergraph.git ``` Nightly version is the development version of **DHG**. It may include the lastest SOTA methods and datasets, but it can also be unstable and not fully tested. If you find any bugs, please report it to us in [GitHub Issues](https://github.com/iMoonLab/DeepHypergraph/issues). ## Quick Start ### Visualization You can draw the graph, hypergraph, directed graph, and bipartite graph with DHG's visualization tool. More details see the [Tutorial](https://deephypergraph.readthedocs.io/en/latest/tutorial/vis_structure.html) ![Visualization of graph and hypergraph](https://deephypergraph.com/readme_graph_hypergraph.png) ```python import matplotlib.pyplot as plt import dhg # draw a graph g = dhg.random.graph_Gnm(10, 12) g.draw() # draw a hypergraph hg = dhg.random.hypergraph_Gnm(10, 8) hg.draw() # show figures plt.show() ``` ![Visualization of directed graph and bipartite graph](https://deephypergraph.com/readme_digraph_bigraph.png) ```python import matplotlib.pyplot as plt import dhg # draw a directed graph g = dhg.random.digraph_Gnm(12, 18) g.draw() # draw a bipartite graph g = dhg.random.bigraph_Gnm(30, 40, 20) g.draw() # show figures plt.show() ``` ### Learning on Low-Order Structures On graph structures, you can smooth a given vertex features with GCN's Laplacian matrix by: ```python import torch import dhg g = dhg.random.graph_Gnm(5, 8) X = torch.rand(5, 2) X_ = g.smoothing_with_GCN(X) ``` On graph structures, you can pass messages from vertex to vertex with `mean` aggregation by: ```python import torch import dhg g = dhg.random.graph_Gnm(5, 8) X = torch.rand(5, 2) X_ = g.v2v(X, aggr="mean") ``` On directed graph structures, you can pass messages from vertex to vertex with `mean` aggregation by: ```python import torch import dhg g = dhg.random.digraph_Gnm(5, 8) X = torch.rand(5, 2) X_ = g.v2v(X, aggr="mean") ``` On bipartite graph structures, you can smoothing vertex features with GCN's Laplacian matrix by: ```python import torch import dhg g = dhg.random.bigraph_Gnm(3, 5, 8) X_u, X_v = torch.rand(3, 2), torch.rand(5, 2) X = torch.cat([X_u, X_v], dim=0) X_ = g.smoothing_with_GCN(X, aggr="mean") ``` On bipartite graph structures, you can pass messages from vertex in `U` set to vertex in `V` set by `mean` aggregation by: ```python import torch import dhg g = dhg.random.bigraph_Gnm(3, 5, 8) X_u, X_v = torch.rand(3, 2), torch.rand(5, 2) X_u_ = g.v2u(X_v, aggr="mean") X_v_ = g.u2v(X_u, aggr="mean") ``` ### Learning on High-Order Structures On hypergraph structures, you can smooth a given vertex features with HGNN's Laplacian matrix by: ```python import torch import dhg hg = dhg.random.hypergraph_Gnm(5, 4) X = torch.rand(5, 2) X_ = hg.smoothing_with_HGNN(X) ``` On hypergraph structures, you can pass messages from vertex to hyperedge with `mean` aggregation by: ```python import torch import dhg hg = dhg.random.hypergraph_Gnm(5, 4) X = torch.rand(5, 2) Y_ = hg.v2e(X, aggr="mean") ``` Then, you can pass messages from hyperedge to vertex with `mean` aggregation by: ```python X_ = hg.e2v(Y_, aggr="mean") ``` Or, you can pass messages from vertex set to vertex set with `mean` aggregation by: ```python X_ = hg.v2v(X, aggr="mean") ``` ## Examples ### Building the Convolution Layer of GCN ```python class GCNConv(nn.Module): def __init__(self,): super().__init__() ... self.reset_parameters() def forward(self, X: torch.Tensor, g: dhg.Graph) -> torch.Tensor: # apply the trainable parameters ``theta`` to the input ``X`` X = self.theta(X) # smooth the input ``X`` with the GCN's Laplacian X = g.smoothing_with_GCN(X) X = F.relu(X) return X ``` ### Building the Convolution Layer of GAT ```python class GATConv(nn.Module): def __init__(self,): super().__init__() ... self.reset_parameters() def forward(self, X: torch.Tensor, g: dhg.Graph) -> torch.Tensor: # apply the trainable parameters ``theta`` to the input ``X`` X = self.theta(X) # compute attention weights for each edge x_for_src = self.atten_src(X) x_for_dst = self.atten_dst(X) e_atten_score = x_for_src[g.e_src] + x_for_dst[g.e_dst] e_atten_score = F.leaky_relu(e_atten_score).squeeze() # apply ``e_atten_score`` to each edge in the graph ``g``, aggragete neighbor messages # with ``softmax_then_sum``, and perform vertex->vertex message passing in graph # with message passing function ``v2v()`` X = g.v2v(X, aggr="softmax_then_sum", e_weight=e_atten_score) X = F.elu(X) return X ``` ### Building the Convolution Layer of HGNN ```python class HGNNConv(nn.Module): def __init__(self,): super().__init__() ... self.reset_parameters() def forward(self, X: torch.Tensor, hg: dhg.Hypergraph) -> torch.Tensor: # apply the trainable parameters ``theta`` to the input ``X`` X = self.theta(X) # smooth the input ``X`` with the HGNN's Laplacian X = hg.smoothing_with_HGNN(X) X = F.relu(X) return X ``` ### Building the Convolution Layer of HGNN $^+$ ```python class HGNNPConv(nn.Module): def __init__(self,): super().__init__() ... self.reset_parameters() def forward(self, X: torch.Tensor, hg: dhg.Hypergraph) -> torch.Tensor: # apply the trainable parameters ``theta`` to the input ``X`` X = self.theta(X) # perform vertex->hyperedge->vertex message passing in hypergraph # with message passing function ``v2v``, which is the combination # of message passing function ``v2e()`` and ``e2v()`` X = hg.v2v(X, aggr="mean") X = F.relu(X) return X ``` ## Datasets Currently, we have added the following datasets: - **[Cora](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Cora.html#dhg.data.Cora)**: A citation network dataset for vertex classification task. - **[PubMed](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Pubmed.html#dhg.data.Pubmed)**: A citation network dataset for vertex classification task. - **[Citeseer](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Citeseer.html#dhg.data.Citeseer)**: A citation network dataset for vertex classification task. - **[BlogCatalog](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.BlogCatalog.html#dhg.data.BlogCatalog)**: A social network dataset for vertex classification task. - **[Flickr](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Flickr.html#dhg.data.Flickr)**: A social network dataset for vertex classification task. - **[Github](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Github.html#dhg.data.Github)**: A collaboration network dataset for vertex classification task. - **[Facebook](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Facebook.html#dhg.data.Facebook)**: A social network dataset for vertex classification task. - **[MovieLens1M](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.MovieLens1M.html#dhg.data.MovieLens1M)**: A movie dataset for user-item recommendation task. - **[AmazonBook](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.AmazonBook.html#dhg.data.AmazonBook)**: An Amazon dataset for user-item recommendation task. - **[Yelp2018](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Yelp2018.html#dhg.data.Yelp2018)**: A restaurant review dataset for user-item recommendation task. - **[Gowalla](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Gowalla.html#dhg.data.Gowalla)**: A location's feedback dataset for user-item recommendation task. - **[TecentBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.TencentBiGraph.html#dhg.data.TencentBiGraph)**: A social network dataset for vertex classification task. - **[CoraBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CoraBiGraph.html#dhg.data.CoraBiGraph)**: A citation network dataset for vertex classification task. - **[PubmedBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.PubmedBiGraph.html#dhg.data.PubmedBiGraph)**: A citation network dataset for vertex classification task. - **[CiteseerBiGraph](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CiteseerBiGraph.html#dhg.data.CiteseerBiGraph)**: A citation network dataset for vertex classification task. - **[Cooking200](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.Cooking200.html#dhg.data.Cooking200)**: A cooking recipe dataset for vertex classification task. - **[CoauthorshipCora](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CoauthorshipCora.html#dhg.data.CoauthorshipCora)**: A citation network dataset for vertex classification task. - **[CoauthorshipDBLP](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CoauthorshipDBLP.html#dhg.data.CoauthorshipDBLP)**: A citation network dataset for vertex classification task. - **[CocitationCora](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CocitationCora.html#dhg.data.CocitationCora)**: A citation network dataset for vertex classification task. - **[CocitationPubmed](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CocitationCiteseer.html#dhg.data.CocitationCiteseer)**: A citation network dataset for vertex classification task. - **[CocitationCiteseer](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.CocitationPubmed.html#dhg.data.CocitationPubmed)**: A citation network dataset for vertex classification task. - **[YelpRestaurant](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.YelpRestaurant.html#dhg.data.YelpRestaurant)**: A restaurant-review network dataset for vertex classification task. - **[WalmartTrips](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.WalmartTrips.html#dhg.data.WalmartTrips)**: A user-product network dataset for vertex classification task. - **[HouseCommittees](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.HouseCommittees.html#dhg.data.HouseCommittees)**: A committee network dataset for vertex classification task. - **[News20](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.News20.html#dhg.data.News20)**: A newspaper network dataset for vertex classification task. - **[DBLP8k](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.data.DBLP8k.html#dhg.data.DBLP8k)**: The DBLP-8k dataset is a citation network dataset for link prediction task. ## Metrics ### Classification Metrics - **[Accuracy](https://deephypergraph.readthedocs.io/en/latest/api/metrics.html#dhg.metrics.classification.accuracy)**: Calculates the accuracy of the predictions. - **[F1-Score](https://deephypergraph.readthedocs.io/en/latest/api/metrics.html#dhg.metrics.classification.f1_score)**: Calculates the F1-score of the predictions. - **[Confusion Matrix](https://deephypergraph.readthedocs.io/en/latest/api/metrics.html#dhg.metrics.classification.confusion_matrix)**: Calculates the confusion matrix of the predictions. ### Recommender Metrics - **[Precision@k](https://deephypergraph.readthedocs.io/en/latest/api/metrics.html#dhg.metrics.recommender.precision)**: Calculates the precision@k of the predictions. - **[Recall@k](https://deephypergraph.readthedocs.io/en/latest/_modules/dhg/metrics/recommender.html#recall)**: Calculates the recall@k of the predictions. - **[NDCG@k](https://deephypergraph.readthedocs.io/en/latest/api/metrics.html#dhg.metrics.recommender.ndcg)**: Calculates the normalized discounted cumulative gain@k of the predictions. ### Retrieval Metrics - **[Precision@k](https://deephypergraph.readthedocs.io/en/latest/api/metrics.html#dhg.metrics.retrieval.precision)**: Calculates the precision@k of the predictions. - **[Recall@k](https://deephypergraph.readthedocs.io/en/latest/api/metrics.html#dhg.metrics.retrieval.recall)**: Calculates the recall@k of the predictions. - **[mAP@k](https://deephypergraph.readthedocs.io/en/latest/api/metrics.html#dhg.metrics.retrieval.map)**: Calculates the mAP@k of the predictions. - **[NDCG@k](https://deephypergraph.readthedocs.io/en/latest/api/metrics.html#dhg.metrics.retrieval.ndcg)**: Calculates the normalized Discounted Cumulative Gain@k of the predictions. - **[mRR@k](https://deephypergraph.readthedocs.io/en/latest/api/metrics.html#dhg.metrics.retrieval.mrr)**: Calculates the mean Reciprocal Rank@k of the predictions. - **[PR-Curve](https://deephypergraph.readthedocs.io/en/latest/api/metrics.html#dhg.metrics.retrieval.pr_curve)**: Calculates the precision-recall curve of the predictions. ## Implemented Models ### On Low-Order Structures - **[GCN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.GCN.html#dhg.models.GCN)** model of [Semi-Supervised Classification with Graph Convolutional Networks](https://arxiv.org/pdf/1609.02907) paper (ICLR 2017). - **[GraphSAGE](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.GraphSAGE.html#dhg.models.GraphSAGE)** model of [Inductive Representation Learning on Large Graphs](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf) paper (NeurIPS 2017). - **[GAT](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.GAT.html#dhg.models.GAT)** model of [Graph Attention Networks](https://arxiv.org/pdf/1710.10903) paper (ICLR 2018). - **[GIN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.GIN.html#dhg.models.GIN)** model of [How Powerful are Graph Neural Networks?](https://arxiv.org/pdf/1810.00826) paper (ICLR 2019). - **[NGCF](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.NGCF.html#dhg.models.NGCF)** model of [Neural Graph Collaborative Filtering](https://arxiv.org/pdf/1905.08108) paper (SIGIR 2019). - **[LightGCN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.LightGCN.html#dhg.models.LightGCN)** model of [LightGCN: Lightweight Graph Convolutional Networks](https://arxiv.org/pdf/2002.02126) paper (SIGIR 2020). - **[BGNN-Adv](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.BGNN_Adv.html#dhg.models.BGNN_Adv)** model of [Cascade-BGNN: Toward Efficient Self-supervised Representation Learning on Large-scale Bipartite Graphs](https://arxiv.org/pdf/1906.11994.pdf) paper (TNNLS 2020). - **[BGNN-MLP](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.BGNN_MLP.html#dhg.models.BGNN_MLP)** model of [Cascade-BGNN: Toward Efficient Self-supervised Representation Learning on Large-scale Bipartite Graphs](https://arxiv.org/pdf/1906.11994.pdf) paper (TNNLS 2020). ### On High-Order Structures - **[HGNN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.HGNN.html#dhg.models.HGNN)** model of [Hypergraph Neural Networks](https://arxiv.org/pdf/1809.09401) paper (AAAI 2019). - **[HGNN+](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.HGNNP.html#dhg.models.HGNNP)** model of [HGNN+: General Hypergraph Neural Networks](https://ieeexplore.ieee.org/document/9795251) paper (IEEE T-PAMI 2022). - **[HyperGCN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.HyperGCN.html#dhg.models.HyperGCN)** model of [HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs](https://papers.nips.cc/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf) paper (NeurIPS 2019). - **[DHCF](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.DHCF.html#dhg.models.DHCF)** model of [Dual Channel Hypergraph Collaborative Filtering](https://dl.acm.org/doi/10.1145/3394486.3403253) paper (KDD 2020). - **[HNHN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.HNHN.html#dhg.models.HNHN)** model of [HNHN: Hypergraph Networks with Hyperedge Neurons](https://arxiv.org/pdf/2006.12278.pdf) paper (ICML 2020). - **[UniGCN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniGCN.html#dhg.models.UniGCN)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021). - **[UniGAT](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniGAT.html#dhg.models.UniGAT)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021). - **[UniSAGE](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniSAGE.html#dhg.models.UniSAGE)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021). - **[UniGIN](https://deephypergraph.readthedocs.io/en/latest/generated/dhg.models.UniGIN.html#dhg.models.UniGIN)** model of [UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks](https://arxiv.org/pdf/2105.00956.pdf) paper (IJCAI 2021). ## Citing If you find **DHG** is useful in your research, please consider citing: ``` @article{gao2022hgnn, title={HGNN $\^{}+ $: General Hypergraph Neural Networks}, author={Gao, Yue and Feng, Yifan and Ji, Shuyi and Ji, Rongrong}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, year={2022}, publisher={IEEE} } ``` ``` @inproceedings{feng2019hypergraph, title={Hypergraph neural networks}, author={Feng, Yifan and You, Haoxuan and Zhang, Zizhao and Ji, Rongrong and Gao, Yue}, booktitle={Proceedings of the AAAI conference on artificial intelligence}, volume={33}, number={01}, pages={3558--3565}, year={2019} } ``` ## The DHG Team DHG is developed by DHG's core team including [Yifan Feng](http://fengyifan.site/), [Xinwei Zhang](https://github.com/zhangxwww), [Jielong Yan](https://github.com/JasonYanjl), [Shuyi Ji](), [Yue Gao](http://moon-lab.tech/), and [Qionghai Dai](https://ysg.ckcest.cn/html/details/8058/index.html). It is maintained by the [iMoon-Lab](http://moon-lab.tech/), Tsinghua University. You can contact us at [email](mailto:evanfeng97@gmail.com). ## License DHG uses Apache License 2.0.


نیازمندی

مقدار نام
>=1.12.1,<2.0 torch
>=1.8,<2.0 scipy
- optuna
- numpy
- scikit-learn
- requests
- matplotlib


زبان مورد نیاز

مقدار نام
>=3.8,<4.0 Python


نحوه نصب


نصب پکیج whl dhg-0.9.3:

    pip install dhg-0.9.3.whl


نصب پکیج tar.gz dhg-0.9.3:

    pip install dhg-0.9.3.tar.gz