=====================
DistrictHeatingDesign
=====================
.. image:: https://img.shields.io/pypi/v/dhd.svg
:target: https://pypi.python.org/pypi/dhd
.. image:: https://img.shields.io/travis/jonas.paccolat/dhd.svg
:target: https://travis-ci.org/jonas.paccolat/dhd
.. image:: https://readthedocs.org/projects/dhd/badge/?version=latest
:target: https://dhd.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
Graph theory and evolutionary algorithm applied to city district heating network
design.
Motivation
----------
This project belongs to a series of numerical tools developed by the CREM
(https://www.crem.ch/) in the perspective of a better energy distribution and
consumption at the city scale.
Description
-----------
The design of a district heating network is closely related to the problem of
finding the Terminal Steiner Tree (TST) of a graph. Indeed for a given connected
graph and a given subset of nodes, called terminals, the TST is the network of
smallest weight connecting all terminals only once. This is the exact structure
needed for a district heating network connecting heat sinks (buildings) to a
heating source via a streets network.
This package implement a systematic way of finding the best possible network
within a given amount of numerical computation. Indeed the TST problem being
NP complete, an heuristic evolutive algorithm is used.
The heating load of the buildings is then distributed throughout all the
pipelines belonging to the district heating network.
Additional tools are available to download city geometries from the Open Street
Map (OSM) dataset, modify their content, reshape their structure or visualize
them as well as for obtaining information on the network characteristics.
Package structure
-----------------
The package is organized in modules as represented on the figure below. The
information on the city geometries and the district heating network is stored
in dataframes (*streets, sinks, sources, terminals, vertices, tst, pipelines,
...*) which evolve along with the design process.
.. figure:: https://gitlab.com/crem-repository/dhd/raw/master/docs/images/structure.png
:align: center
* **Network Design**:
This is the core of the package. It takes the streets, sinks and source(s)
as input and returns the district heating network.
- The first module, *dhd.connect*, connects the terminals (sinks and
source(s)) to the streets and store the updated network in the dataframe
*vertices*. The multiple possible connections of each terminal are stored
in the dataframe *terminals*.
- The second module, *dhd.evolve*, implements the evolutive algorithm
which seeks the best connection network and store it into the data frame
*tst*.
- The last module, *dhd.load*, spreads the sinks heating loads throughout
the heating network and merge neighbor pipes of equal load into single
pipelines, which are stored in the dataframe *pipelines*.
* **Data Generation**:
This set allows to download any city geometries from the OSM dataset and to
modify some of its data.
- The module *dhd.city* defines a class associated to any given city. It
automatically loads the geometries of its streets and buildings.
Additional information such as the source location or the presence of
natural barriers may be provided. All this information is organized into
dataframes.
- The module *dhd.modify* allows to easily select and modify rows and
columns of the previously defined dataframes. Note that despite its being
in the same set as *dhd.city* it may naturally be applied to dataframes of
different origins.
* **Graphical Interface**
The module *dhd.plot* is used to define a background interface displaying
the provided streets, buildings, source(s) and natural barrier(s). The
different geometries constructed along the design process can be plotted
over the background.
* **Network Properties**
The module *dhd.features* computes and displays properties of the designed
network.
Installation
------------
Assuming you have `Python 3.X <https://www.python.org/downloads/>`_ installed,
you can simply install DHD with pip:
.. code-block:: bash
$ pip install dhd
If you prefer to install it from source (git is required) run the following
commands:
.. code-block:: bash
$ git clone https://gitlab.com/crem-repository/dhd.git
$ pip install -r requirements.txt
$ pip install .
We recommend to use a virtual environment for the installation.
Also jupyter notebooks (`Jupyter Notebook <http://jupyter.org/>`_) are necessary
to run the learning examples and are practical when using the package.
The spatial indexing in Python requires the ctypes Python wrapper
`Rtree <http://toblerity.org/rtree/>`_. Please follow the installation instructions
on the previous link.
How to use ?
------------
Import the package modules:
.. code-block:: python
from dhd import city, connect, evolve, load
from shapely.geometry import Point
Load the geometries of the city of Vevey in Switzerland:
.. code-block:: python
vevey = city.City('Vevey, Switzerland', sources=Point(333795, 5147530))
streets = vevey.get_streets()
sinks = vevey.select_sinks(min_load=300)
sources = vevey.get_sources()
Connect the selected buildings (sinks) and the source to the streets network:
.. code-block:: python
vertices, terminals = connect.connect_terminals(streets, sinks, sources)
Run the evolutive algorithm to seek the best possible heating network within
five generations:
.. code-block:: python
N = 5
evolution = evolve.run_evolution(vertices, terminals, N)
tst = evolve.get_best_terminal_steiner_tree(vertices, terminals, evolution)
Spread the buildings load over the district heating pipelines:
.. code-block:: python
pipelines = load.load_the_pipelines(tst, terminals)
More detailed `examples
<https://gitlab.com/crem-repository/dhd/tree/master/notebooks>`_ are provided in
the GitLab repository.
Reference
---------
Click the following link to access the full `documentation
<https://dhd.readthedocs.io/en/latest/>`_.
Further developments
--------------------
Here is a list of features eager to be implemented. Please refer to the
CONTRIBUTING file if you either want to append or pop this list.
* *dhd.city*
- Function to easily add a street to the streets network, accounting for the
different connection options: street node, street edge, no street.
* *dhd.connect*
- Treat the source(s) and sinks separately when connecting them.
- So far the natural barriers completely forbid any connection crossing them.
This criterion could be adjusted to a connection weight enhancement.
License
-------
Free software: Apache Software License 2.0
Credits
-------
Research and implementation work for this tool has been carried out within the
project IntegrCiTy (ERA-NET Cofund Smart Cities and Communities call). In
Switzerland, it is funded by the Swiss Federal Office of Energy (contract
SI/501404-2), as well as by the industrial and institutional partners of the
project .
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.
.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage